A Model-Based Approach to Assess Epidemic Risk.

Pub Date : 2022-01-01 Epub Date: 2021-11-15 DOI:10.1007/s12561-021-09329-z
Hugo Dolan, Riccardo Rastelli
{"title":"A Model-Based Approach to Assess Epidemic Risk.","authors":"Hugo Dolan, Riccardo Rastelli","doi":"10.1007/s12561-021-09329-z","DOIUrl":null,"url":null,"abstract":"<p><p>We study how international flights can facilitate the spread of an epidemic to a worldwide scale. We combine an infrastructure network of flight connections with a population density dataset to derive the mobility network, and then we define an epidemic framework to model the spread of the disease. Our approach combines a compartmental SEIRS model with a graph diffusion model to capture the clusteredness of the distribution of the population. The resulting model is characterised by the dynamics of a metapopulation SEIRS, with amplification or reduction of the infection rate which is determined also by the mobility of individuals. We use simulations to characterise and study a variety of realistic scenarios that resemble the recent spread of COVID-19. Crucially, we define a formal framework that can be used to design epidemic mitigation strategies: we propose an optimisation approach based on genetic algorithms that can be used to identify an optimal airport closure strategy, and that can be employed to aid decision making for the mitigation of the epidemic, in a timely manner.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8591322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12561-021-09329-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study how international flights can facilitate the spread of an epidemic to a worldwide scale. We combine an infrastructure network of flight connections with a population density dataset to derive the mobility network, and then we define an epidemic framework to model the spread of the disease. Our approach combines a compartmental SEIRS model with a graph diffusion model to capture the clusteredness of the distribution of the population. The resulting model is characterised by the dynamics of a metapopulation SEIRS, with amplification or reduction of the infection rate which is determined also by the mobility of individuals. We use simulations to characterise and study a variety of realistic scenarios that resemble the recent spread of COVID-19. Crucially, we define a formal framework that can be used to design epidemic mitigation strategies: we propose an optimisation approach based on genetic algorithms that can be used to identify an optimal airport closure strategy, and that can be employed to aid decision making for the mitigation of the epidemic, in a timely manner.

Abstract Image

Abstract Image

Abstract Image

分享
查看原文
基于模型的流行病风险评估方法。
我们研究了国际航班如何促进流行病在全球范围内的传播。我们将航班连接的基础设施网络与人口密度数据集相结合,推导出流动性网络,然后我们定义了一个流行病框架来模拟疾病的传播。我们的方法将分区 SEIRS 模型与图扩散模型相结合,以捕捉人口分布的集群性。由此产生的模型具有元种群 SEIRS 的动态特征,感染率的扩大或缩小也由个体的流动性决定。我们利用模拟来描述和研究与 COVID-19 近期传播相似的各种现实情况。最重要的是,我们定义了一个可用于设计疫情缓解策略的正式框架:我们提出了一种基于遗传算法的优化方法,可用于确定最佳机场关闭策略,并可用于辅助决策,及时缓解疫情。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信