BayesGaze: A Bayesian Approach to Eye-Gaze Based Target Selection.

Zhi Li, Maozheng Zhao, Yifan Wang, Sina Rashidian, Furqan Baig, Rui Liu, Wanyu Liu, Michel Beaudouin-Lafon, Brooke Ellison, Fusheng Wang, Ramakrishnan, Xiaojun Bi
{"title":"BayesGaze: A Bayesian Approach to Eye-Gaze Based Target Selection.","authors":"Zhi Li,&nbsp;Maozheng Zhao,&nbsp;Yifan Wang,&nbsp;Sina Rashidian,&nbsp;Furqan Baig,&nbsp;Rui Liu,&nbsp;Wanyu Liu,&nbsp;Michel Beaudouin-Lafon,&nbsp;Brooke Ellison,&nbsp;Fusheng Wang,&nbsp;Ramakrishnan,&nbsp;Xiaojun Bi","doi":"10.20380/GI2021.35","DOIUrl":null,"url":null,"abstract":"<p><p>Selecting targets accurately and quickly with eye-gaze input remains an open research question. In this paper, we introduce BayesGaze, a Bayesian approach of determining the selected target given an eye-gaze trajectory. This approach views each sampling point in an eye-gaze trajectory as a signal for selecting a target. It then uses the Bayes' theorem to calculate the posterior probability of selecting a target given a sampling point, and accumulates the posterior probabilities weighted by sampling interval to determine the selected target. The selection results are fed back to update the prior distribution of targets, which is modeled by a categorical distribution. Our investigation shows that BayesGaze improves target selection accuracy and speed over a dwell-based selection method, and the Center of Gravity Mapping (CM) method. Our research shows that both accumulating posterior and incorporating the prior are effective in improving the performance of eye-gaze based target selection.</p>","PeriodicalId":93493,"journal":{"name":"Proceedings. Graphics Interface (Conference)","volume":"2021 ","pages":"231-240"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8853835/pdf/nihms-1777407.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Graphics Interface (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20380/GI2021.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Selecting targets accurately and quickly with eye-gaze input remains an open research question. In this paper, we introduce BayesGaze, a Bayesian approach of determining the selected target given an eye-gaze trajectory. This approach views each sampling point in an eye-gaze trajectory as a signal for selecting a target. It then uses the Bayes' theorem to calculate the posterior probability of selecting a target given a sampling point, and accumulates the posterior probabilities weighted by sampling interval to determine the selected target. The selection results are fed back to update the prior distribution of targets, which is modeled by a categorical distribution. Our investigation shows that BayesGaze improves target selection accuracy and speed over a dwell-based selection method, and the Center of Gravity Mapping (CM) method. Our research shows that both accumulating posterior and incorporating the prior are effective in improving the performance of eye-gaze based target selection.

贝叶斯注视:一种基于眼睛注视的目标选择贝叶斯方法。
通过眼注视输入准确、快速地选择目标仍然是一个有待研究的问题。在本文中,我们介绍了BayesGaze,一种贝叶斯方法来确定给定眼球注视轨迹的选定目标。该方法将眼球注视轨迹中的每个采样点视为选择目标的信号。然后利用贝叶斯定理计算给定采样点选择目标的后验概率,并将后验概率按采样间隔加权累加,确定所选目标。将选择结果反馈到目标的先验分布中,更新目标的先验分布,并建立分类分布模型。我们的研究表明,BayesGaze比基于驻留的选择方法和重心映射(CM)方法提高了目标选择的精度和速度。我们的研究表明,积累后验和融合先验都可以有效地提高基于眼睛注视的目标选择的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信