Armielle Noulapeu Ngaffo, Walid El Ayeb, Zièd Choukair
{"title":"Service recommendation driven by a matrix factorization model and time series forecasting.","authors":"Armielle Noulapeu Ngaffo, Walid El Ayeb, Zièd Choukair","doi":"10.1007/s10489-021-02478-0","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of high-quality cloud services has made service recommendation a crucial research question. Quality of Service (QoS) is widely adopted to characterize the performance of services invoked by users. For this purpose, the QoS prediction of services constitutes a decisive tool to allow end-users to optimally choose high-quality cloud services aligned with their needs. The fact is that users only consume a few of the broad range of existing services. Thereby, perform a high-accurate service recommendation becomes a challenging task. To tackle the aforementioned challenges, we propose a data sparsity resilient service recommendation approach that aims to predict relevant services in a sustainable manner for end-users. Indeed, our method performs both a QoS prediction of the current time interval using a flexible matrix factorization technique and a QoS prediction of the future time interval using a time series forecasting method based on an AutoRegressive Integrated Moving Average (ARIMA) model. The service recommendation in our approach is based on a couple of criteria ensuring in a lasting way, the appropriateness of the services returned to the active user. The experiments are conducted on a real-world dataset and demonstrate the effectiveness of our method compared to the competing recommendation methods.</p>","PeriodicalId":72260,"journal":{"name":"Applied intelligence (Dordrecht, Netherlands)","volume":"52 1","pages":"1110-1125"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10489-021-02478-0","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied intelligence (Dordrecht, Netherlands)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10489-021-02478-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The rise of high-quality cloud services has made service recommendation a crucial research question. Quality of Service (QoS) is widely adopted to characterize the performance of services invoked by users. For this purpose, the QoS prediction of services constitutes a decisive tool to allow end-users to optimally choose high-quality cloud services aligned with their needs. The fact is that users only consume a few of the broad range of existing services. Thereby, perform a high-accurate service recommendation becomes a challenging task. To tackle the aforementioned challenges, we propose a data sparsity resilient service recommendation approach that aims to predict relevant services in a sustainable manner for end-users. Indeed, our method performs both a QoS prediction of the current time interval using a flexible matrix factorization technique and a QoS prediction of the future time interval using a time series forecasting method based on an AutoRegressive Integrated Moving Average (ARIMA) model. The service recommendation in our approach is based on a couple of criteria ensuring in a lasting way, the appropriateness of the services returned to the active user. The experiments are conducted on a real-world dataset and demonstrate the effectiveness of our method compared to the competing recommendation methods.