Assessing Gq-GPCR-induced human astrocyte reactivity using bioengineered neural organoids.

Caroline Cvetkovic, Rajan Patel, Arya Shetty, Matthew K Hogan, Morgan Anderson, Nupur Basu, Samira Aghlara-Fotovat, Srivathsan Ramesh, Debosmita Sardar, Omid Veiseh, Michael E Ward, Benjamin Deneen, Philip J Horner, Robert Krencik
{"title":"Assessing Gq-GPCR-induced human astrocyte reactivity using bioengineered neural organoids.","authors":"Caroline Cvetkovic,&nbsp;Rajan Patel,&nbsp;Arya Shetty,&nbsp;Matthew K Hogan,&nbsp;Morgan Anderson,&nbsp;Nupur Basu,&nbsp;Samira Aghlara-Fotovat,&nbsp;Srivathsan Ramesh,&nbsp;Debosmita Sardar,&nbsp;Omid Veiseh,&nbsp;Michael E Ward,&nbsp;Benjamin Deneen,&nbsp;Philip J Horner,&nbsp;Robert Krencik","doi":"10.1083/jcb.202107135","DOIUrl":null,"url":null,"abstract":"<p><p>Astrocyte reactivity can directly modulate nervous system function and immune responses during disease and injury. However, the consequence of human astrocyte reactivity in response to specific contexts and within neural networks is obscure. Here, we devised a straightforward bioengineered neural organoid culture approach entailing transcription factor-driven direct differentiation of neurons and astrocytes from human pluripotent stem cells combined with genetically encoded tools for dual cell-selective activation. This strategy revealed that Gq-GPCR activation via chemogenetics in astrocytes promotes a rise in intracellular calcium followed by induction of immediate early genes and thrombospondin 1. However, astrocytes also undergo NF-κB nuclear translocation and secretion of inflammatory proteins, correlating with a decreased evoked firing rate of cocultured optogenetic neurons in suboptimal conditions, without overt neurotoxicity. Altogether, this study clarifies the intrinsic reactivity of human astrocytes in response to targeting GPCRs and delivers a bioengineered approach for organoid-based disease modeling and preclinical drug testing.</p>","PeriodicalId":343306,"journal":{"name":"The Journal of Cell Biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/44/69/JCB_202107135.PMC8842185.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1083/jcb.202107135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Astrocyte reactivity can directly modulate nervous system function and immune responses during disease and injury. However, the consequence of human astrocyte reactivity in response to specific contexts and within neural networks is obscure. Here, we devised a straightforward bioengineered neural organoid culture approach entailing transcription factor-driven direct differentiation of neurons and astrocytes from human pluripotent stem cells combined with genetically encoded tools for dual cell-selective activation. This strategy revealed that Gq-GPCR activation via chemogenetics in astrocytes promotes a rise in intracellular calcium followed by induction of immediate early genes and thrombospondin 1. However, astrocytes also undergo NF-κB nuclear translocation and secretion of inflammatory proteins, correlating with a decreased evoked firing rate of cocultured optogenetic neurons in suboptimal conditions, without overt neurotoxicity. Altogether, this study clarifies the intrinsic reactivity of human astrocytes in response to targeting GPCRs and delivers a bioengineered approach for organoid-based disease modeling and preclinical drug testing.

Abstract Image

Abstract Image

Abstract Image

利用生物工程类神经器官评估gq - gpcr诱导的人类星形胶质细胞反应性。
星形胶质细胞的反应性可以直接调节疾病和损伤期间的神经系统功能和免疫反应。然而,人类星形胶质细胞对特定环境和神经网络的反应性的后果是模糊的。在这里,我们设计了一种简单的生物工程神经类器官培养方法,将转录因子驱动的神经元和星形胶质细胞从人类多能干细胞中直接分化,并结合基因编码工具进行双细胞选择性激活。该策略表明,星形胶质细胞中通过化学遗传学激活Gq-GPCR可促进细胞内钙的增加,随后诱导即时早期基因和血栓反应蛋白1。然而,星形胶质细胞也会发生NF-κB核易位和炎症蛋白的分泌,这与共培养光遗传神经元在次优条件下诱发放电率下降有关,没有明显的神经毒性。总之,本研究阐明了人类星形胶质细胞对靶向gpcr的内在反应性,并为基于器官的疾病建模和临床前药物测试提供了一种生物工程方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信