Simultaneous Hierarchical Bayesian Parameter Estimation for Reinforcement Learning and Drift Diffusion Models: a Tutorial and Links to Neural Data.

Computational brain & behavior Pub Date : 2020-12-01 Epub Date: 2020-05-26 DOI:10.1007/s42113-020-00084-w
Mads L Pedersen, Michael J Frank
{"title":"Simultaneous Hierarchical Bayesian Parameter Estimation for Reinforcement Learning and Drift Diffusion Models: a Tutorial and Links to Neural Data.","authors":"Mads L Pedersen,&nbsp;Michael J Frank","doi":"10.1007/s42113-020-00084-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive models have been instrumental for generating insights into the brain processes underlying learning and decision making. In reinforcement learning it has recently been shown that not only choice proportions but also their latency distributions can be well captured when the choice function is replaced with a sequential sampling model such as the drift diffusion model. Hierarchical Bayesian parameter estimation further enhances the identifiability of distinct learning and choice parameters. One caveat is that these models can be time-consuming to build, sample from, and validate, especially when models include links between neural activations and model parameters. Here we describe a novel extension to the widely used hierarchical drift diffusion model (HDDM) toolbox, which facilitates flexible construction, estimation, and evaluation of the reinforcement learning drift diffusion model (RLDDM) using hierarchical Bayesian methods. We describe the types of experiments most applicable to the model and provide a tutorial to illustrate how to perform quantitative data analysis and model evaluation. Parameter recovery confirmed that the method can reliably estimate parameters with varying numbers of synthetic subjects and trials. We also show that the simultaneous estimation of learning and choice parameters can improve the sensitivity to detect brain-behavioral relationships, including the impact of learned values and fronto-basal ganglia activity patterns on dynamic decision parameters.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"3 4","pages":"458-471"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s42113-020-00084-w","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42113-020-00084-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/5/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Cognitive models have been instrumental for generating insights into the brain processes underlying learning and decision making. In reinforcement learning it has recently been shown that not only choice proportions but also their latency distributions can be well captured when the choice function is replaced with a sequential sampling model such as the drift diffusion model. Hierarchical Bayesian parameter estimation further enhances the identifiability of distinct learning and choice parameters. One caveat is that these models can be time-consuming to build, sample from, and validate, especially when models include links between neural activations and model parameters. Here we describe a novel extension to the widely used hierarchical drift diffusion model (HDDM) toolbox, which facilitates flexible construction, estimation, and evaluation of the reinforcement learning drift diffusion model (RLDDM) using hierarchical Bayesian methods. We describe the types of experiments most applicable to the model and provide a tutorial to illustrate how to perform quantitative data analysis and model evaluation. Parameter recovery confirmed that the method can reliably estimate parameters with varying numbers of synthetic subjects and trials. We also show that the simultaneous estimation of learning and choice parameters can improve the sensitivity to detect brain-behavioral relationships, including the impact of learned values and fronto-basal ganglia activity patterns on dynamic decision parameters.

Abstract Image

Abstract Image

Abstract Image

同时层次贝叶斯参数估计强化学习和漂移扩散模型:教程和链接到神经数据。
认知模型在深入了解学习和决策背后的大脑过程方面发挥了重要作用。在强化学习中,最近的研究表明,当选择函数被序列采样模型(如漂移扩散模型)取代时,不仅可以很好地捕获选择比例,而且可以很好地捕获它们的延迟分布。分层贝叶斯参数估计进一步增强了不同学习参数和选择参数的可辨识性。需要注意的是,这些模型的构建、采样和验证可能非常耗时,尤其是当模型包含神经激活和模型参数之间的联系时。在这里,我们描述了对广泛使用的分层漂移扩散模型(HDDM)工具箱的一种新的扩展,它有助于使用分层贝叶斯方法灵活地构建、估计和评估强化学习漂移扩散模型(RLDDM)。我们描述了最适用于模型的实验类型,并提供了一个教程来说明如何进行定量数据分析和模型评估。参数恢复验证了该方法可以在不同数量的合成受试者和试验条件下可靠地估计参数。同时估计学习参数和选择参数可以提高检测脑行为关系的灵敏度,包括学习值和额基底神经节活动模式对动态决策参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信