Centering Noisy Images with Application to Cryo-EM.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2021-01-01 Epub Date: 2021-05-25 DOI:10.1137/20m1365946
Ayelet Heimowitz, Nir Sharon, Amit Singer
{"title":"Centering Noisy Images with Application to Cryo-EM.","authors":"Ayelet Heimowitz,&nbsp;Nir Sharon,&nbsp;Amit Singer","doi":"10.1137/20m1365946","DOIUrl":null,"url":null,"abstract":"<p><p>We target the problem of estimating the center of mass of objects in noisy two-dimensional images. We assume that the noise dominates the image, and thus many standard approaches are vulnerable to estimation errors, e.g., the direct computation of the center of mass and the geometric median which is a robust alternative to the center of mass. In this paper, we define a novel surrogate function to the center of mass. We present a mathematical and numerical analysis of our method and show that it outperforms existing methods for estimating the center of mass of an object in various realistic scenarios. As a case study, we apply our centering method to data from single-particle cryo-electron microscopy (cryo-EM), where the goal is to reconstruct the three-dimensional structure of macromolecules. We show how to apply our approach for a better translational alignment of molecule images picked from experimental data. In this way, we facilitate the succeeding steps of reconstruction and streamline the entire cryo-EM pipeline, saving computational time and supporting resolution enhancement.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813033/pdf/nihms-1739531.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1365946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We target the problem of estimating the center of mass of objects in noisy two-dimensional images. We assume that the noise dominates the image, and thus many standard approaches are vulnerable to estimation errors, e.g., the direct computation of the center of mass and the geometric median which is a robust alternative to the center of mass. In this paper, we define a novel surrogate function to the center of mass. We present a mathematical and numerical analysis of our method and show that it outperforms existing methods for estimating the center of mass of an object in various realistic scenarios. As a case study, we apply our centering method to data from single-particle cryo-electron microscopy (cryo-EM), where the goal is to reconstruct the three-dimensional structure of macromolecules. We show how to apply our approach for a better translational alignment of molecule images picked from experimental data. In this way, we facilitate the succeeding steps of reconstruction and streamline the entire cryo-EM pipeline, saving computational time and supporting resolution enhancement.

噪声图像定心及其在低温电镜中的应用。
研究了二维图像中物体质心的估计问题。我们假设噪声在图像中占主导地位,因此许多标准方法容易受到估计误差的影响,例如,直接计算质心和几何中位数,这是质心的鲁棒替代方法。在本文中,我们定义了一个新的质心替代函数。我们对我们的方法进行了数学和数值分析,并表明它在各种现实场景中优于现有的估计物体质心的方法。作为一个案例研究,我们将我们的定心方法应用于来自单粒子冷冻电子显微镜(cryo-EM)的数据,其目的是重建大分子的三维结构。我们展示了如何将我们的方法应用于从实验数据中挑选的分子图像的更好的平移对齐。通过这种方式,我们简化了重建的后续步骤,简化了整个低温电镜管道,节省了计算时间并支持分辨率增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信