{"title":"Stimuli-responsive electrospun nanofibers based on PNVCL-PVAc copolymer in biomedical applications.","authors":"Sogand Safari, Morteza Ehsani, Mojgan Zandi","doi":"10.1007/s40204-021-00168-1","DOIUrl":null,"url":null,"abstract":"<p><p>Poly(N-vinylcaprolactam) (PNVCL) is a suitable alternative for biomedical applications due to its biocompatibility, biodegradability, non-toxicity, and showing phase transition at the human body temperature range. The purpose of this study was to synthesize a high molecular weight PNVCL-PVAc thermo-responsive copolymer with broad mass distribution suitable for electrospun nanofiber fabrication. The chemical structure of the synthesized materials was detected by FTIR and <sup>1</sup>HNMR spectroscopies. N-Vinyl caprolactam/vinyl acetate copolymers (159,680 molecular weight (g/mol) and 2.51 PDI) were synthesized by radical polymerization. The phase transition temperature of N-vinyl caprolactam/vinyl acetate copolymer was determined by conducting a contact angle test at various temperatures (25, 26, 28, and 30 [Formula: see text]). The biocompatibility of the nanofibers was also evaluated, and both qualitative and quantitative results showed that the growth and proliferation of 929L mouse fibroblast cells increased to 80% within 48 h. These results revealed that the synthesized nanofibers were biocompatible and not cytotoxic. The results confirmed that the synthesized copolymers have good characteristics for biomedical applications.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8633178/pdf/40204_2021_Article_168.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00168-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
Poly(N-vinylcaprolactam) (PNVCL) is a suitable alternative for biomedical applications due to its biocompatibility, biodegradability, non-toxicity, and showing phase transition at the human body temperature range. The purpose of this study was to synthesize a high molecular weight PNVCL-PVAc thermo-responsive copolymer with broad mass distribution suitable for electrospun nanofiber fabrication. The chemical structure of the synthesized materials was detected by FTIR and 1HNMR spectroscopies. N-Vinyl caprolactam/vinyl acetate copolymers (159,680 molecular weight (g/mol) and 2.51 PDI) were synthesized by radical polymerization. The phase transition temperature of N-vinyl caprolactam/vinyl acetate copolymer was determined by conducting a contact angle test at various temperatures (25, 26, 28, and 30 [Formula: see text]). The biocompatibility of the nanofibers was also evaluated, and both qualitative and quantitative results showed that the growth and proliferation of 929L mouse fibroblast cells increased to 80% within 48 h. These results revealed that the synthesized nanofibers were biocompatible and not cytotoxic. The results confirmed that the synthesized copolymers have good characteristics for biomedical applications.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.