Computational immune infiltration analysis of pediatric high-grade gliomas (pHGGs) reveals differences in immunosuppression and prognosis by tumor location
Cavan P. Bailey, Ruiping Wang, Mary Figueroa, Shaojun Zhang, Linghua Wang, Joya Chandra
{"title":"Computational immune infiltration analysis of pediatric high-grade gliomas (pHGGs) reveals differences in immunosuppression and prognosis by tumor location","authors":"Cavan P. Bailey, Ruiping Wang, Mary Figueroa, Shaojun Zhang, Linghua Wang, Joya Chandra","doi":"10.1002/cso2.1016","DOIUrl":null,"url":null,"abstract":"<p>Immunotherapy for cancer has moved from pre-clinical hypothesis to successful clinical application in the past 15 years. However, not all cancers have shown response rates in clinical trials for these new agents. igh-grade gliomas, in particular, have proved exceedingly refractory to immunotherapy. In adult patients, there has been much investigation into these failures, and researchers have concluded that an immunosuppressive microenvironment combined with low mutational burden renders adult glioblastomas “immune cold.” Pediatric cancer patients develop gliomas at a higher rate per malignancy than adults, and their brain tumors bear even fewer mutations. These tumors can also develop in more diverse locations in the brain, beyond the cerebral hemispheres seen in adults, including in the brainstem where critical motor functions are controlled. While adult brain tumor immune infiltration has been extensively profiled from surgical resections, this is not possible for brainstem tumors that can only be sampled at autopsy. Given these limitations, there is a dearth of information on immune cells and their therapeutic and prognostic impact in pediatric high-grade gliomas (pHGGs), including hemispheric tumors in addition to brainstem. In this report, we use computational methods to examine immune infiltrate in pHGGs and discover distinct immune patterns between hemispheric and brainstem tumors. In hemispheric tumors, we find positive prognostic associations for regulatory T-cells, memory B-cells, eosinophils, and dendritic cells, but not in brainstem tumors. These differences suggest that immunotherapeutic approaches must be cognizant of pHGG tumor location and tailored for optimum efficacy.</p>","PeriodicalId":72658,"journal":{"name":"Computational and systems oncology","volume":"1 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cso2.1016","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and systems oncology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cso2.1016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Immunotherapy for cancer has moved from pre-clinical hypothesis to successful clinical application in the past 15 years. However, not all cancers have shown response rates in clinical trials for these new agents. igh-grade gliomas, in particular, have proved exceedingly refractory to immunotherapy. In adult patients, there has been much investigation into these failures, and researchers have concluded that an immunosuppressive microenvironment combined with low mutational burden renders adult glioblastomas “immune cold.” Pediatric cancer patients develop gliomas at a higher rate per malignancy than adults, and their brain tumors bear even fewer mutations. These tumors can also develop in more diverse locations in the brain, beyond the cerebral hemispheres seen in adults, including in the brainstem where critical motor functions are controlled. While adult brain tumor immune infiltration has been extensively profiled from surgical resections, this is not possible for brainstem tumors that can only be sampled at autopsy. Given these limitations, there is a dearth of information on immune cells and their therapeutic and prognostic impact in pediatric high-grade gliomas (pHGGs), including hemispheric tumors in addition to brainstem. In this report, we use computational methods to examine immune infiltrate in pHGGs and discover distinct immune patterns between hemispheric and brainstem tumors. In hemispheric tumors, we find positive prognostic associations for regulatory T-cells, memory B-cells, eosinophils, and dendritic cells, but not in brainstem tumors. These differences suggest that immunotherapeutic approaches must be cognizant of pHGG tumor location and tailored for optimum efficacy.