Deep Learning Approach for Dynamic Sparse Sampling for High-Throughput Mass Spectrometry Imaging.

David Helminiak, Hang Hu, Julia Laskin, Dong Hye Ye
{"title":"Deep Learning Approach for Dynamic Sparse Sampling for High-Throughput Mass Spectrometry Imaging.","authors":"David Helminiak,&nbsp;Hang Hu,&nbsp;Julia Laskin,&nbsp;Dong Hye Ye","doi":"10.2352/issn.2470-1173.2021.15.coimg-290","DOIUrl":null,"url":null,"abstract":"<p><p>A Supervised Learning Approach for Dynamic Sampling (SLADS) addresses traditional issues with the incorporation of stochastic processes into a compressed sensing method. Statistical features, extracted from a sample reconstruction, estimate entropy reduction with regression models, in order to dynamically determine optimal sampling locations. This work introduces an enhanced SLADS method, in the form of a Deep Learning Approach for Dynamic Sampling (DLADS), showing reductions in sample acquisition times for high-fidelity reconstructions between ~ 70-80% over traditional rectilinear scanning. These improvements are demonstrated for dimensionally asymmetric, high-resolution molecular images of mouse uterine and kidney tissues, as obtained using Nanospray Desorption ElectroSpray Ionization (nano-DESI) Mass Spectrometry Imaging (MSI). The methodology for training set creation is adjusted to mitigate stretching artifacts generated when using prior SLADS approaches. Transitioning to DLADS removes the need for feature extraction, further advanced with the employment of convolutional layers to leverage inter-pixel spatial relationships. Additionally, DLADS demonstrates effective generalization, despite dissimilar training and testing data. Overall, DLADS is shown to maximize potential experimental throughput for nano-DESI MSI.</p>","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"2021 Computational Imaging XIX","pages":"2901-2907"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8553253/pdf/nihms-1699290.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/issn.2470-1173.2021.15.coimg-290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A Supervised Learning Approach for Dynamic Sampling (SLADS) addresses traditional issues with the incorporation of stochastic processes into a compressed sensing method. Statistical features, extracted from a sample reconstruction, estimate entropy reduction with regression models, in order to dynamically determine optimal sampling locations. This work introduces an enhanced SLADS method, in the form of a Deep Learning Approach for Dynamic Sampling (DLADS), showing reductions in sample acquisition times for high-fidelity reconstructions between ~ 70-80% over traditional rectilinear scanning. These improvements are demonstrated for dimensionally asymmetric, high-resolution molecular images of mouse uterine and kidney tissues, as obtained using Nanospray Desorption ElectroSpray Ionization (nano-DESI) Mass Spectrometry Imaging (MSI). The methodology for training set creation is adjusted to mitigate stretching artifacts generated when using prior SLADS approaches. Transitioning to DLADS removes the need for feature extraction, further advanced with the employment of convolutional layers to leverage inter-pixel spatial relationships. Additionally, DLADS demonstrates effective generalization, despite dissimilar training and testing data. Overall, DLADS is shown to maximize potential experimental throughput for nano-DESI MSI.

高通量质谱成像中动态稀疏采样的深度学习方法。
一种用于动态采样的监督学习方法(SLADS)通过将随机过程纳入压缩感知方法来解决传统问题。从样本重建中提取统计特征,用回归模型估计熵降,以便动态确定最佳采样位置。这项工作引入了一种增强的SLADS方法,以动态采样(DLADS)的深度学习方法的形式,显示出与传统的直线扫描相比,高保真重建的样本采集时间减少了~ 70-80%。这些改进在使用纳米喷雾解吸电喷雾电离(纳米desi)质谱成像(MSI)获得的小鼠子宫和肾脏组织的尺寸不对称、高分辨率分子图像中得到了证明。训练集创建的方法进行了调整,以减轻使用先前的SLADS方法时产生的拉伸工件。过渡到DLADS消除了特征提取的需要,并进一步利用卷积层来利用像素间的空间关系。此外,尽管训练和测试数据不同,DLADS仍显示出有效的泛化。总的来说,DLADS被证明可以最大限度地提高纳米desi MSI的潜在实验吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信