The Geometry of Marked Contact Engel Structures.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2021-01-01 Epub Date: 2020-11-19 DOI:10.1007/s12220-020-00545-5
Gianni Manno, Paweł Nurowski, Katja Sagerschnig
{"title":"The Geometry of Marked Contact Engel Structures.","authors":"Gianni Manno,&nbsp;Paweł Nurowski,&nbsp;Katja Sagerschnig","doi":"10.1007/s12220-020-00545-5","DOIUrl":null,"url":null,"abstract":"<p><p>A <i>contact twisted cubic structure</i> <math><mrow><mo>(</mo> <mi>M</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mrow><mi>γ</mi></mrow> <mo>)</mo></mrow> </math> is a 5-dimensional manifold <math><mi>M</mi></math> together with a contact distribution <math><mi>C</mi></math> and a bundle of twisted cubics <math> <mrow><mrow><mi>γ</mi></mrow> <mo>⊂</mo> <mi>P</mi> <mo>(</mo> <mi>C</mi> <mo>)</mo></mrow> </math> compatible with the conformal symplectic form on <math><mi>C</mi></math> . The simplest contact twisted cubic structure is referred to as the <i>contact Engel structure</i>; its symmetry group is the exceptional group <math><msub><mi>G</mi> <mn>2</mn></msub> </math> . In the present paper we equip the contact Engel structure with a smooth section <math><mrow><mi>σ</mi> <mo>:</mo> <mi>M</mi> <mo>→</mo> <mrow><mi>γ</mi></mrow> </mrow> </math> , which \"marks\" a point in each fibre <math> <msub><mrow><mi>γ</mi></mrow> <mi>x</mi></msub> </math> . We study the local geometry of the resulting structures <math><mrow><mo>(</mo> <mi>M</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mrow><mi>γ</mi></mrow> <mo>,</mo> <mi>σ</mi> <mo>)</mo></mrow> </math> , which we call <i>marked contact Engel structures</i>. Equivalently, our study can be viewed as a study of foliations of <math><mi>M</mi></math> by curves whose tangent directions are everywhere contained in <math><mrow><mi>γ</mi></mrow> </math> . We provide a complete set of local invariants of marked contact Engel structures, we classify all homogeneous models with symmetry groups of dimension <math><mrow><mo>≥</mo> <mn>6</mn></mrow> </math> up to local equivalence, and we prove an analogue of the classical Kerr theorem from Relativity.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-020-00545-5","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-020-00545-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

A contact twisted cubic structure ( M , C , γ ) is a 5-dimensional manifold M together with a contact distribution C and a bundle of twisted cubics γ P ( C ) compatible with the conformal symplectic form on C . The simplest contact twisted cubic structure is referred to as the contact Engel structure; its symmetry group is the exceptional group G 2 . In the present paper we equip the contact Engel structure with a smooth section σ : M γ , which "marks" a point in each fibre γ x . We study the local geometry of the resulting structures ( M , C , γ , σ ) , which we call marked contact Engel structures. Equivalently, our study can be viewed as a study of foliations of M by curves whose tangent directions are everywhere contained in γ . We provide a complete set of local invariants of marked contact Engel structures, we classify all homogeneous models with symmetry groups of dimension 6 up to local equivalence, and we prove an analogue of the classical Kerr theorem from Relativity.

Abstract Image

Abstract Image

Abstract Image

标记接触恩格尔结构的几何特性。
接触扭曲三次结构(M, C, γ)是一个5维流形M,它具有一个接触分布C和一束扭曲三次γ∧P (C),与C上的共形辛形式相容。最简单的接触扭立方结构称为接触恩格尔结构;它的对称群是例外群g2。在本文中,我们为接触恩格尔结构配备了光滑截面σ: M→γ,它在每个纤维γ x上“标记”一个点。我们研究了所得结构(M, C, γ, σ)的局部几何形状,我们称之为标记接触恩格尔结构。同样地,我们的研究可以看作是对切方向处处包含在γ中的曲线对M的叶化的研究。我们给出了标记接触Engel结构的局部不变量的完整集合,将所有具有≥6维对称群的齐次模型分类到局部等价,并证明了相对论中经典Kerr定理的一个类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信