John C Myers, Farzan Irani, Edward J Golob, Jeffrey R Mock, Kay A Robbins
{"title":"Single-Trial Classification of Disfluent Brain States in Adults Who Stutter.","authors":"John C Myers, Farzan Irani, Edward J Golob, Jeffrey R Mock, Kay A Robbins","doi":"10.1109/smc.2018.00019","DOIUrl":null,"url":null,"abstract":"<p><p>Normal human speech requires precise coordination between motor planning and sensory processing. Speech disfluencies are common when children learn to talk, but usually abate with time. About 5% of children experience stuttering. For most, this resolves within a year. However, for approximately 1% of the world population, stuttering continues into adulthood, which is termed 'persistent developmental stuttering'. Most stuttering events occur at the beginning of an utterance. So, in principle, brain activity before speaking should differ between fluent and stuttered speech. Here we present a method for classifying brain network states associated with fluent vs. stuttered speech on a single trial basis. Brain activity was recorded with EEG before people who stutter read aloud pseudo-word pairs. Offline independent component analysis (ICA) was used to identify the independent neural sources that underlie speech preparation. A time window selection algorithm extracted spectral power and coherence data from salient windows specific to each neural source. A stepwise linear discriminant analysis (sLDA) algorithm predicted fluent vs. stuttered speech for 81% of trials in two subjects. These results support the feasibility of developing a brain-computer interface (BCI) system to detect stuttering before it occurs, with potential for therapeutic application.</p>","PeriodicalId":72691,"journal":{"name":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/smc.2018.00019","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/smc.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/17 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Normal human speech requires precise coordination between motor planning and sensory processing. Speech disfluencies are common when children learn to talk, but usually abate with time. About 5% of children experience stuttering. For most, this resolves within a year. However, for approximately 1% of the world population, stuttering continues into adulthood, which is termed 'persistent developmental stuttering'. Most stuttering events occur at the beginning of an utterance. So, in principle, brain activity before speaking should differ between fluent and stuttered speech. Here we present a method for classifying brain network states associated with fluent vs. stuttered speech on a single trial basis. Brain activity was recorded with EEG before people who stutter read aloud pseudo-word pairs. Offline independent component analysis (ICA) was used to identify the independent neural sources that underlie speech preparation. A time window selection algorithm extracted spectral power and coherence data from salient windows specific to each neural source. A stepwise linear discriminant analysis (sLDA) algorithm predicted fluent vs. stuttered speech for 81% of trials in two subjects. These results support the feasibility of developing a brain-computer interface (BCI) system to detect stuttering before it occurs, with potential for therapeutic application.