Degenerate Elastic Networks.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2021-01-01 Epub Date: 2020-10-09 DOI:10.1007/s12220-020-00521-z
Giacomo Del Nin, Alessandra Pluda, Marco Pozzetta
{"title":"Degenerate Elastic Networks.","authors":"Giacomo Del Nin,&nbsp;Alessandra Pluda,&nbsp;Marco Pozzetta","doi":"10.1007/s12220-020-00521-z","DOIUrl":null,"url":null,"abstract":"<p><p>We minimize a linear combination of the length and the <math><msup><mi>L</mi> <mn>2</mn></msup> </math> -norm of the curvature among networks in <math> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> </math> belonging to a given class determined by the number of curves, the order of the junctions, and the angles between curves at the junctions. Since this class lacks compactness, we characterize the set of limits of sequences of networks bounded in energy, providing an explicit representation of the relaxed problem. This is expressed in terms of the new notion of degenerate elastic networks that, rather surprisingly, involves only the properties of the given class, without reference to the curvature. In the case of <math><mrow><mi>d</mi> <mo>=</mo> <mn>2</mn></mrow> </math> we also give an equivalent description of degenerate elastic networks by means of a combinatorial definition easy to validate by a finite algorithm. Moreover we provide examples, counterexamples, and additional results that motivate our study and show the sharpness of our characterization.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s12220-020-00521-z","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-020-00521-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We minimize a linear combination of the length and the L 2 -norm of the curvature among networks in R d belonging to a given class determined by the number of curves, the order of the junctions, and the angles between curves at the junctions. Since this class lacks compactness, we characterize the set of limits of sequences of networks bounded in energy, providing an explicit representation of the relaxed problem. This is expressed in terms of the new notion of degenerate elastic networks that, rather surprisingly, involves only the properties of the given class, without reference to the curvature. In the case of d = 2 we also give an equivalent description of degenerate elastic networks by means of a combinatorial definition easy to validate by a finite algorithm. Moreover we provide examples, counterexamples, and additional results that motivate our study and show the sharpness of our characterization.

Abstract Image

Abstract Image

Abstract Image

简并弹性网络。
我们最小化了R d中属于给定类的网络之间的曲率长度和l2范数的线性组合,这些网络由曲线的数量、结点的顺序和结点处曲线之间的夹角决定。由于这类缺乏紧性,我们描述了能量有界的网络序列的极限集,提供了松弛问题的显式表示。这是用退化弹性网络的新概念来表达的,令人惊讶的是,它只涉及给定类的性质,而不涉及曲率。在d = 2的情况下,我们还用易于用有限算法验证的组合定义给出了退化弹性网络的等价描述。此外,我们提供的例子,反例,和额外的结果,激励我们的研究和显示我们的特征的清晰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信