James Rizkalla, David Botros, Nasser Alqahtani, Mounica Patnala, Paul Salama, Felipe Pablo Perez, Maher Rizkalla
{"title":"Eletromagnetic Detection of Mild Brain Injury: A Novel Imaging Approach to Post Concussive Syndrome.","authors":"James Rizkalla, David Botros, Nasser Alqahtani, Mounica Patnala, Paul Salama, Felipe Pablo Perez, Maher Rizkalla","doi":"10.4236/jbise.2021.1411030","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mild traumatic brain injury (mTBI) is a common injury, with nearly 3 - 4 million cases annually in the United States alone. Neuroimaging in patients with mTBI provides little benefit, and is usually not indicated as the diagnosis is primarily clinical. It is theorized that microvascular trauma to the brain may be present in mTBI, that may not be captured by routine MRI and CT scans. Electromagnetic (EM) waves may provide a more sensitive medical imaging modality to provide objective data in the diagnosis of mTBI.</p><p><strong>Methods: </strong>COMSOL simulation software was utilized to mimic the anatomy of the human skull including skin, cranium, cerebrospinal fluid (CSF), gray-matter tissue of the brain, and microvasculature within the neural tissue. The effects of penetrating EM waves were simulated using the finite element analysis software and results were generated to identify feasibility and efficacy. Frequency ranges from 7 GHz to 15 GHz were considered, with 0.6 and 1 W power applied.</p><p><strong>Results: </strong>Variations between the differing frequency levels generated different energy levels within the neural tissue-particularly when comparing normal microvasculature versus hemorrhage from microvasculature. This difference within the neural tissue was subsequently identified, via simulation, serving as a potential imaging modality for future work.</p><p><strong>Conclusion: </strong>The use of electromagnetic imaging of the brain after concussive events may play a role in future mTBI diagnosis. Utilizing the proper depth frequency and wavelength, neural tissue and microvascular trauma may be identified utilizing finite element analysis.</p>","PeriodicalId":15173,"journal":{"name":"Journal of Biomedical Science and Engineering","volume":"14 11","pages":"347-360"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8641976/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jbise.2021.1411030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Mild traumatic brain injury (mTBI) is a common injury, with nearly 3 - 4 million cases annually in the United States alone. Neuroimaging in patients with mTBI provides little benefit, and is usually not indicated as the diagnosis is primarily clinical. It is theorized that microvascular trauma to the brain may be present in mTBI, that may not be captured by routine MRI and CT scans. Electromagnetic (EM) waves may provide a more sensitive medical imaging modality to provide objective data in the diagnosis of mTBI.
Methods: COMSOL simulation software was utilized to mimic the anatomy of the human skull including skin, cranium, cerebrospinal fluid (CSF), gray-matter tissue of the brain, and microvasculature within the neural tissue. The effects of penetrating EM waves were simulated using the finite element analysis software and results were generated to identify feasibility and efficacy. Frequency ranges from 7 GHz to 15 GHz were considered, with 0.6 and 1 W power applied.
Results: Variations between the differing frequency levels generated different energy levels within the neural tissue-particularly when comparing normal microvasculature versus hemorrhage from microvasculature. This difference within the neural tissue was subsequently identified, via simulation, serving as a potential imaging modality for future work.
Conclusion: The use of electromagnetic imaging of the brain after concussive events may play a role in future mTBI diagnosis. Utilizing the proper depth frequency and wavelength, neural tissue and microvascular trauma may be identified utilizing finite element analysis.