{"title":"Multi-antibacterial agent-based electrospun polycaprolactone for active wound dressing.","authors":"Fatemeh Safdari, Maryam Darya Gholipour, Azam Ghadami, Mahdi Saeed, Mojgan Zandi","doi":"10.1007/s40204-021-00176-1","DOIUrl":null,"url":null,"abstract":"<p><p>Today, due to the greater knowledge of the side effects of chemical drugs and the favorable pharmacological properties of herbal compounds, the use of these compounds is increasing. Since wounds need fast and efficient healing, wound dressing fabrication methods play an important role in wound healing. In this research, electrospinning process was used to prepare samples. Natural antibacterial compounds, such as curcumin, piperine, eugenol, and rutin were loaded in electrospun nano-fibrous based on polycaprolactone. Three-component novel systems of curcumin-piperine-eugenol (PCPiEu), and curcumin-piperine-rutin (PCPiR) were designed and prepared. Their synergistic effect was investigated and also compared with one- and two-component systems. The results showed that medium diameter nanofibers of PCPiEu and PCPiR samples was 198.38 and 142.60, respectively, and they were obtained in smooth, uniform and bead free morphology using optimization of process parameters. The amount of water absorption and water vapor permeability of the three-component samples were in the appropriate range (8.33-10.42 mg cm<sup>2</sup> h<sup>-1</sup>) for wound dressings. The mechanical properties of samples were reduced compared to the control sample, which required further investigation. Antibacterial tests showed good results for partial toxicity of PCPiEu and PCPiR samples. Antibacterial tests showed minor toxicity in PCPiR samples and good results were obtained for PCPiEu samples. In addition, the results showed that PCPiEu and PCPiR samples exhibited antibacterial activity against Gram-positive bacterium Staphylococcus aureus and Gram-negative Enterococcus faecalis bacterium, so that killing ability of 74% and 75% against Gram-positive bacterium and 99.47% and 96.88% against Gram-negative bacterium were obtained for these three systems, respectively.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927529/pdf/40204_2021_Article_176.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-021-00176-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 5
Abstract
Today, due to the greater knowledge of the side effects of chemical drugs and the favorable pharmacological properties of herbal compounds, the use of these compounds is increasing. Since wounds need fast and efficient healing, wound dressing fabrication methods play an important role in wound healing. In this research, electrospinning process was used to prepare samples. Natural antibacterial compounds, such as curcumin, piperine, eugenol, and rutin were loaded in electrospun nano-fibrous based on polycaprolactone. Three-component novel systems of curcumin-piperine-eugenol (PCPiEu), and curcumin-piperine-rutin (PCPiR) were designed and prepared. Their synergistic effect was investigated and also compared with one- and two-component systems. The results showed that medium diameter nanofibers of PCPiEu and PCPiR samples was 198.38 and 142.60, respectively, and they were obtained in smooth, uniform and bead free morphology using optimization of process parameters. The amount of water absorption and water vapor permeability of the three-component samples were in the appropriate range (8.33-10.42 mg cm2 h-1) for wound dressings. The mechanical properties of samples were reduced compared to the control sample, which required further investigation. Antibacterial tests showed good results for partial toxicity of PCPiEu and PCPiR samples. Antibacterial tests showed minor toxicity in PCPiR samples and good results were obtained for PCPiEu samples. In addition, the results showed that PCPiEu and PCPiR samples exhibited antibacterial activity against Gram-positive bacterium Staphylococcus aureus and Gram-negative Enterococcus faecalis bacterium, so that killing ability of 74% and 75% against Gram-positive bacterium and 99.47% and 96.88% against Gram-negative bacterium were obtained for these three systems, respectively.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.