{"title":"Meta-Analysis of Joint Test of SNP and SNP-Environment Interaction with Heterogeneity.","authors":"Qinqin Jin, Gang Shi","doi":"10.1159/000519098","DOIUrl":null,"url":null,"abstract":"<p><p>Many complex diseases are caused by single nucleotide polymorphisms (SNPs), environmental factors, and the interaction between SNPs and environment. Joint tests of the SNP and SNP-environment interaction effects (JMA) and meta-regression (MR) are commonly used to evaluate these SNP-environment interactions. However, these two methods do not consider genetic heterogeneity. We previously presented a random-effect MR, which provided higher power than the MR in datasets with high heterogeneity. However, this method requires group-level data, which sometimes are not available. Given this, we designed this study to evaluate the introduction of the random effects of SNP and SNP-environment interaction into the JMA, and then extended this to the random effect model. Likelihood ratio statistic is applied to test the JMA and the new method we proposed in this paper. We evaluated the null distributions of these tests, and the powers for this method. This method was verified by simulation and was shown to provide similar powers to the random effect meta-regression method (RMR). However, this method only requires study-level data which relaxed the condition of the RMR. Our study suggests that this method is more suitable for finding the association between SNP and diseases in the absence of group-level data.</p>","PeriodicalId":13226,"journal":{"name":"Human Heredity","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Heredity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000519098","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1
Abstract
Many complex diseases are caused by single nucleotide polymorphisms (SNPs), environmental factors, and the interaction between SNPs and environment. Joint tests of the SNP and SNP-environment interaction effects (JMA) and meta-regression (MR) are commonly used to evaluate these SNP-environment interactions. However, these two methods do not consider genetic heterogeneity. We previously presented a random-effect MR, which provided higher power than the MR in datasets with high heterogeneity. However, this method requires group-level data, which sometimes are not available. Given this, we designed this study to evaluate the introduction of the random effects of SNP and SNP-environment interaction into the JMA, and then extended this to the random effect model. Likelihood ratio statistic is applied to test the JMA and the new method we proposed in this paper. We evaluated the null distributions of these tests, and the powers for this method. This method was verified by simulation and was shown to provide similar powers to the random effect meta-regression method (RMR). However, this method only requires study-level data which relaxed the condition of the RMR. Our study suggests that this method is more suitable for finding the association between SNP and diseases in the absence of group-level data.
期刊介绍:
Gathering original research reports and short communications from all over the world, ''Human Heredity'' is devoted to methodological and applied research on the genetics of human populations, association and linkage analysis, genetic mechanisms of disease, and new methods for statistical genetics, for example, analysis of rare variants and results from next generation sequencing. The value of this information to many branches of medicine is shown by the number of citations the journal receives in fields ranging from immunology and hematology to epidemiology and public health planning, and the fact that at least 50% of all ''Human Heredity'' papers are still cited more than 8 years after publication (according to ISI Journal Citation Reports). Special issues on methodological topics (such as ‘Consanguinity and Genomics’ in 2014; ‘Analyzing Rare Variants in Complex Diseases’ in 2012) or reviews of advances in particular fields (‘Genetic Diversity in European Populations: Evolutionary Evidence and Medical Implications’ in 2014; ‘Genes and the Environment in Obesity’ in 2013) are published every year. Renowned experts in the field are invited to contribute to these special issues.