Allosteric and dynamic control of RNA-dependent RNA polymerase function and fidelity.

Q3 Biochemistry, Genetics and Molecular Biology
Enzymes Pub Date : 2021-01-01 Epub Date: 2021-07-19 DOI:10.1016/bs.enz.2021.06.001
Dennis S Winston, David D Boehr
{"title":"Allosteric and dynamic control of RNA-dependent RNA polymerase function and fidelity.","authors":"Dennis S Winston,&nbsp;David D Boehr","doi":"10.1016/bs.enz.2021.06.001","DOIUrl":null,"url":null,"abstract":"<p><p>All RNA viruses encode an RNA-dependent RNA polymerase (RdRp) responsible for genome replication. It is now recognized that enzymes in general, and RdRps specifically, are dynamic macromolecular machines such that their moving parts, including active site loops, play direct functional roles. While X-ray crystallography has provided deep insight into structural elements important for RdRp function, this methodology generally provides only static snapshots, and so is limited in its ability to report on dynamic fluctuations away from the lowest energy conformation. Nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations and other biophysical techniques have brought new insight into RdRp function by their ability to characterize the trajectories, kinetics and thermodynamics of conformational motions. In particular, these methodologies have identified coordinated motions among conserved structural motifs necessary for nucleotide selection and incorporation. Disruption of these motions through amino acid substitutions or inhibitor binding impairs RdRp function. Understanding and re-engineering these motions thus provides exciting new avenues for anti-viral strategies. This chapter outlines the basics of these methodologies, summarizes the dynamic motions observed in different RdRps important for nucleotide selection and incorporation, and illustrates how this information can be leveraged towards rational vaccine strain development and anti-viral drug design.</p>","PeriodicalId":39097,"journal":{"name":"Enzymes","volume":" ","pages":"149-193"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzymes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.enz.2021.06.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

All RNA viruses encode an RNA-dependent RNA polymerase (RdRp) responsible for genome replication. It is now recognized that enzymes in general, and RdRps specifically, are dynamic macromolecular machines such that their moving parts, including active site loops, play direct functional roles. While X-ray crystallography has provided deep insight into structural elements important for RdRp function, this methodology generally provides only static snapshots, and so is limited in its ability to report on dynamic fluctuations away from the lowest energy conformation. Nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations and other biophysical techniques have brought new insight into RdRp function by their ability to characterize the trajectories, kinetics and thermodynamics of conformational motions. In particular, these methodologies have identified coordinated motions among conserved structural motifs necessary for nucleotide selection and incorporation. Disruption of these motions through amino acid substitutions or inhibitor binding impairs RdRp function. Understanding and re-engineering these motions thus provides exciting new avenues for anti-viral strategies. This chapter outlines the basics of these methodologies, summarizes the dynamic motions observed in different RdRps important for nucleotide selection and incorporation, and illustrates how this information can be leveraged towards rational vaccine strain development and anti-viral drug design.

RNA依赖性RNA聚合酶功能和保真度的变构和动态控制。
所有RNA病毒都编码一种依赖RNA的RNA聚合酶(RdRp),负责基因组复制。现在人们认识到,酶,特别是RdRps,是动态的大分子机器,因此它们的活动部分,包括活性位点环,起着直接的功能作用。虽然x射线晶体学提供了对RdRp功能重要的结构元素的深入了解,但这种方法通常只提供静态快照,因此在报告远离最低能量构象的动态波动方面受到限制。核磁共振(NMR)、分子动力学(MD)模拟和其他生物物理技术通过表征构象运动的轨迹、动力学和热力学,为RdRp功能带来了新的认识。特别是,这些方法已经确定了核苷酸选择和结合所必需的保守结构基序之间的协调运动。通过氨基酸取代或抑制剂结合破坏这些运动会损害RdRp的功能。因此,理解和重新设计这些运动为抗病毒策略提供了令人兴奋的新途径。本章概述了这些方法的基础,总结了在不同的RdRps中观察到的对核苷酸选择和结合很重要的动态运动,并说明了如何利用这些信息来开发合理的疫苗株和抗病毒药物设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Enzymes
Enzymes Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
4.30
自引率
0.00%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信