M Shehata, A Shalaby, M Ghazal, M Abou El-Ghar, M A Badawy, G Beache, A Dwyer, M El-Melegy, G Giridharan, R Keynton, A El-Baz
{"title":"EARLY ASSESSMENT OF RENAL TRANSPLANTS USING BOLD-MRI: PROMISING RESULTS.","authors":"M Shehata, A Shalaby, M Ghazal, M Abou El-Ghar, M A Badawy, G Beache, A Dwyer, M El-Melegy, G Giridharan, R Keynton, A El-Baz","doi":"10.1109/ICIP.2019.8803042","DOIUrl":null,"url":null,"abstract":"<p><p>Non-invasive evaluation of renal transplant function is essential to minimize and manage renal rejection. A computer-assisted diagnostic (CAD) system was developed to evaluate kidney function post-transplantation. The developed CAD system utilizes the amount of blood-oxygenation extracted from 3D (2D + time) blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) to estimate renal function. BOLD-MRI scans were acquired at five different echo-times (2, 7, 12, 17, and 22) ms from 15 transplant patients. The developed CAD system first segments kidneys using the level-sets method followed by estimation of the amount of deoxyhemoglobin, also known as apparent relaxation rate (R2*). These R2* estimates were used as discriminatory features (global features (mean R2*) and local features (pixel-wise R2*)) to train and test state-of-the-art machine learning classifiers to differentiate between non-rejection (NR) and acute renal rejection. Using a leave-one-out cross-validation approach along with an artificial neural network (ANN) classifier, the CAD system demonstrated 93.3% accuracy, 100% sensitivity, and 90% specificity in distinguishing AR from non-rejection . These preliminary results demonstrate the efficacy of the CAD system to detect renal allograft status non-invasively.</p>","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"2019 ","pages":"1395-1399"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICIP.2019.8803042","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2019.8803042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/8/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Non-invasive evaluation of renal transplant function is essential to minimize and manage renal rejection. A computer-assisted diagnostic (CAD) system was developed to evaluate kidney function post-transplantation. The developed CAD system utilizes the amount of blood-oxygenation extracted from 3D (2D + time) blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) to estimate renal function. BOLD-MRI scans were acquired at five different echo-times (2, 7, 12, 17, and 22) ms from 15 transplant patients. The developed CAD system first segments kidneys using the level-sets method followed by estimation of the amount of deoxyhemoglobin, also known as apparent relaxation rate (R2*). These R2* estimates were used as discriminatory features (global features (mean R2*) and local features (pixel-wise R2*)) to train and test state-of-the-art machine learning classifiers to differentiate between non-rejection (NR) and acute renal rejection. Using a leave-one-out cross-validation approach along with an artificial neural network (ANN) classifier, the CAD system demonstrated 93.3% accuracy, 100% sensitivity, and 90% specificity in distinguishing AR from non-rejection . These preliminary results demonstrate the efficacy of the CAD system to detect renal allograft status non-invasively.