SARS-CoV-2 becoming more infectious as revealed by algebraic topology and deep learning.

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jiahui Chen, Rui Wang, Guo-Wei Wei
{"title":"SARS-CoV-2 becoming more infectious as revealed by algebraic topology and deep learning.","authors":"Jiahui Chen,&nbsp;Rui Wang,&nbsp;Guo-Wei Wei","doi":"10.4310/cis.2021.v21.n1.a2","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by coronavirus disease 2019 (COVID-19) has led to a tremendous human fatality and economic loss. SARS-CoV-2 infectivity is a key reason for the widespread viral transmission, but its rigorous experimental measurement is essentially impossible due to the ongoing genome evolution around the world. We show that artificial intelligence (AI) and algebraic topology (AT) offer an accurate and efficient alternative to the experimental determination of viral infectivity. AI and AT analysis indicates that the on-going mutations make SARS-CoV-2 more infectious.</p>","PeriodicalId":45018,"journal":{"name":"Communications in Information and Systems","volume":"21 1","pages":"31-36"},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528241/pdf/nihms-1698929.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Information and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/cis.2021.v21.n1.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by coronavirus disease 2019 (COVID-19) has led to a tremendous human fatality and economic loss. SARS-CoV-2 infectivity is a key reason for the widespread viral transmission, but its rigorous experimental measurement is essentially impossible due to the ongoing genome evolution around the world. We show that artificial intelligence (AI) and algebraic topology (AT) offer an accurate and efficient alternative to the experimental determination of viral infectivity. AI and AT analysis indicates that the on-going mutations make SARS-CoV-2 more infectious.

代数拓扑和深度学习揭示了SARS-CoV-2的传染性增强。
由2019冠状病毒病(COVID-19)引起的严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)已导致巨大的人员死亡和经济损失。SARS-CoV-2的传染性是病毒广泛传播的一个关键原因,但由于世界各地正在进行的基因组进化,其严格的实验测量基本上是不可能的。我们表明,人工智能(AI)和代数拓扑(AT)提供了一种准确和有效的替代实验确定病毒传染性。AI和AT分析表明,正在进行的突变使SARS-CoV-2更具传染性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Information and Systems
Communications in Information and Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信