Robert D Morabito, Rebecca C Adikes, David Q Matus, Benjamin L Martin
{"title":"Cyclin-Dependent Kinase Sensor Transgenic Zebrafish Lines for Improved Cell Cycle State Visualization in Live Animals.","authors":"Robert D Morabito, Rebecca C Adikes, David Q Matus, Benjamin L Martin","doi":"10.1089/zeb.2021.0059","DOIUrl":null,"url":null,"abstract":"Adikes et al. 1 described a novel zebrafish cell cycle sensor that delineates all phases of the cell cycle based on levels of cyclin-dependent kinase (CDK) activity. The CDK sensor consists of a fragment of human DNA Helicase B (DHB) fused to a fluorescent protein. DHB contains a dominant nuclear localization sequence (NLS) and a nuclear export sequence (NES) flanked by CDK-specific phosphorylation sites. Cells that contain low levels of CDK activity have an exposed NLS that localizes the CDK sensor to the nucleus. As the cell cycle progresses, CDK activity increases causing phosphorylation of DHB, which occludes the NLS and allows the NES to promote export of the sensor into the cytoplasm (Fig. 1). The authors showed that quantitative analysis of this ratiometric sensor can distinguish CDK low (CDK), quiescent G0 arrested cells from CDK increasing (CDK), cycling G1 phase cells, as well as identify S, G2, and M phases of the cell cycle.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8716472/pdf/zeb.2021.0059.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2021.0059","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Adikes et al. 1 described a novel zebrafish cell cycle sensor that delineates all phases of the cell cycle based on levels of cyclin-dependent kinase (CDK) activity. The CDK sensor consists of a fragment of human DNA Helicase B (DHB) fused to a fluorescent protein. DHB contains a dominant nuclear localization sequence (NLS) and a nuclear export sequence (NES) flanked by CDK-specific phosphorylation sites. Cells that contain low levels of CDK activity have an exposed NLS that localizes the CDK sensor to the nucleus. As the cell cycle progresses, CDK activity increases causing phosphorylation of DHB, which occludes the NLS and allows the NES to promote export of the sensor into the cytoplasm (Fig. 1). The authors showed that quantitative analysis of this ratiometric sensor can distinguish CDK low (CDK), quiescent G0 arrested cells from CDK increasing (CDK), cycling G1 phase cells, as well as identify S, G2, and M phases of the cell cycle.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.