Evaluation on absorption risks of amentoflavone after oral administration in rats

IF 1.7 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Hui Qiu, Zhengbing Guo, Qian Xu, Shengfang Mao, Wenming Wu
{"title":"Evaluation on absorption risks of amentoflavone after oral administration in rats","authors":"Hui Qiu,&nbsp;Zhengbing Guo,&nbsp;Qian Xu,&nbsp;Shengfang Mao,&nbsp;Wenming Wu","doi":"10.1002/bdd.2304","DOIUrl":null,"url":null,"abstract":"<p>The present study was aimed to systemically assess the absorption risks of amentoflavone (AMF). Physicochemical properties of AMF were evaluated using in vitro assays including water solubility and stability in both simulated gastric and intestinal fluids, as well as logD, pka and permeability studies in a monolayer Caco-2 model. The results together suggested that AMF was a compound with moderate intestinal absorption and the poor solubility was the key rate-limiting step for the oral absorption of AMF, and PVP-K30 were thus used as a solubilizer to improve its solubility and oral bioavailability. Furthermore, studies on pharmacokinetics and biliary excretion of AMF with tween 80 or PVP-K30 were performed after oral administration, and the results showed that the percentage of AMF conjugates in bile was determined up to be 96.73% and no AMF conjugates were detected in rat plasma. The above results revealed that the poor oral absorption of AMF may probably be attributed to the low solubility, high level of metabolism and hepatic first-pass effects. The relative bioavailability of AMF solubilized by PVP-K30 was about 2-fold than that of AMF suspended in 1% tween 80. The present study may help provide scientific insights to guide the rational design of AMF into more efficient formulation systems.</p>","PeriodicalId":8865,"journal":{"name":"Biopharmaceutics & Drug Disposition","volume":"42 9","pages":"435-443"},"PeriodicalIF":1.7000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopharmaceutics & Drug Disposition","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdd.2304","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study was aimed to systemically assess the absorption risks of amentoflavone (AMF). Physicochemical properties of AMF were evaluated using in vitro assays including water solubility and stability in both simulated gastric and intestinal fluids, as well as logD, pka and permeability studies in a monolayer Caco-2 model. The results together suggested that AMF was a compound with moderate intestinal absorption and the poor solubility was the key rate-limiting step for the oral absorption of AMF, and PVP-K30 were thus used as a solubilizer to improve its solubility and oral bioavailability. Furthermore, studies on pharmacokinetics and biliary excretion of AMF with tween 80 or PVP-K30 were performed after oral administration, and the results showed that the percentage of AMF conjugates in bile was determined up to be 96.73% and no AMF conjugates were detected in rat plasma. The above results revealed that the poor oral absorption of AMF may probably be attributed to the low solubility, high level of metabolism and hepatic first-pass effects. The relative bioavailability of AMF solubilized by PVP-K30 was about 2-fold than that of AMF suspended in 1% tween 80. The present study may help provide scientific insights to guide the rational design of AMF into more efficient formulation systems.

Abstract Image

大鼠口服阿门托黄酮的吸收风险评价
本研究旨在系统评估阿门托黄酮(AMF)的吸收风险。AMF的理化性质通过体外实验进行评估,包括在模拟胃液和肠液中的水溶性和稳定性,以及单层Caco-2模型中的logD、pka和通透性研究。综上所述,AMF是一种中等肠道吸收的化合物,其溶解度差是影响AMF口服吸收的关键限制步骤,PVP-K30作为增溶剂可提高其溶解度和口服生物利用度。此外,口服AMF 80或PVP-K30后进行药代动力学和胆汁排泄研究,结果显示,大鼠胆汁中AMF偶联物的比例高达96.73%,血浆中未检测到AMF偶联物。上述结果表明,AMF口服吸收不良可能与其溶解度低、代谢水平高和肝脏首过效应有关。PVP-K30溶解的AMF的相对生物利用度是悬浮在1%的AMF的2倍左右。本研究可为指导AMF的合理设计和更高效的配方体系提供科学的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
35
审稿时长
6-12 weeks
期刊介绍: Biopharmaceutics & Drug Dispositionpublishes original review articles, short communications, and reports in biopharmaceutics, drug disposition, pharmacokinetics and pharmacodynamics, especially those that have a direct relation to the drug discovery/development and the therapeutic use of drugs. These includes: - animal and human pharmacological studies that focus on therapeutic response. pharmacodynamics, and toxicity related to plasma and tissue concentrations of drugs and their metabolites, - in vitro and in vivo drug absorption, distribution, metabolism, transport, and excretion studies that facilitate investigations related to the use of drugs in man - studies on membrane transport and enzymes, including their regulation and the impact of pharmacogenomics on drug absorption and disposition, - simulation and modeling in drug discovery and development - theoretical treatises - includes themed issues and reviews and exclude manuscripts on - bioavailability studies reporting only on simple PK parameters such as Cmax, tmax and t1/2 without mechanistic interpretation - analytical methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信