{"title":"Edge Overlap in Weighted and Directed Social Networks.","authors":"Heather Mattie, Jukka-Pekka Onnela","doi":"10.1017/nws.2020.49","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing availability of behavioral data from diverse digital sources, such as social media sites and cell phones, it is now possible to obtain detailed information about the structure, strength, and directionality of social interactions in varied settings. While most metrics of network structure have traditionally been defined for unweighted and undirected networks only, the richness of current network data calls for extending these metrics to weighted and directed networks. One fundamental metric in social networks is edge overlap, the proportion of friends shared by two connected individuals. Here we extend definitions of edge overlap to weighted and directed networks, and present closed-form expressions for the mean and variance of each version for the Erdős-Rényi random graph and its weighted and directed counterparts. We apply these results to social network data collected in rural villages in southern Karnataka, India. We use our analytical results to quantify the extent to which the average overlap of the empirical social network deviates from that of corresponding random graphs and compare the values of overlap across networks. Our novel definitions allow the calculation of edge overlap for more complex networks and our derivations provide a statistically rigorous way for comparing edge overlap across networks.</p>","PeriodicalId":51827,"journal":{"name":"Network Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507499/pdf/nihms-1712396.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2020.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing availability of behavioral data from diverse digital sources, such as social media sites and cell phones, it is now possible to obtain detailed information about the structure, strength, and directionality of social interactions in varied settings. While most metrics of network structure have traditionally been defined for unweighted and undirected networks only, the richness of current network data calls for extending these metrics to weighted and directed networks. One fundamental metric in social networks is edge overlap, the proportion of friends shared by two connected individuals. Here we extend definitions of edge overlap to weighted and directed networks, and present closed-form expressions for the mean and variance of each version for the Erdős-Rényi random graph and its weighted and directed counterparts. We apply these results to social network data collected in rural villages in southern Karnataka, India. We use our analytical results to quantify the extent to which the average overlap of the empirical social network deviates from that of corresponding random graphs and compare the values of overlap across networks. Our novel definitions allow the calculation of edge overlap for more complex networks and our derivations provide a statistically rigorous way for comparing edge overlap across networks.
期刊介绍:
Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.