Compositional Processing Emerges in Neural Networks Solving Math Problems.

Jacob Russin, Roland Fernandez, Hamid Palangi, Eric Rosen, Nebojsa Jojic, Paul Smolensky, Jianfeng Gao
{"title":"Compositional Processing Emerges in Neural Networks Solving Math Problems.","authors":"Jacob Russin,&nbsp;Roland Fernandez,&nbsp;Hamid Palangi,&nbsp;Eric Rosen,&nbsp;Nebojsa Jojic,&nbsp;Paul Smolensky,&nbsp;Jianfeng Gao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A longstanding question in cognitive science concerns the learning mechanisms underlying compositionality in human cognition. Humans can infer the structured relationships (e.g., grammatical rules) implicit in their sensory observations (e.g., auditory speech), and use this knowledge to guide the composition of simpler meanings into complex wholes. Recent progress in artificial neural networks has shown that when large models are trained on enough linguistic data, grammatical structure emerges in their representations. We extend this work to the domain of mathematical reasoning, where it is possible to formulate precise hypotheses about how meanings (e.g., the quantities corresponding to numerals) should be composed according to structured rules (e.g., order of operations). Our work shows that neural networks are not only able to infer something about the structured relationships implicit in their training data, but can also deploy this knowledge to guide the composition of individual meanings into composite wholes.</p>","PeriodicalId":72634,"journal":{"name":"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference","volume":"2021 ","pages":"1767-1773"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8491571/pdf/nihms-1741686.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A longstanding question in cognitive science concerns the learning mechanisms underlying compositionality in human cognition. Humans can infer the structured relationships (e.g., grammatical rules) implicit in their sensory observations (e.g., auditory speech), and use this knowledge to guide the composition of simpler meanings into complex wholes. Recent progress in artificial neural networks has shown that when large models are trained on enough linguistic data, grammatical structure emerges in their representations. We extend this work to the domain of mathematical reasoning, where it is possible to formulate precise hypotheses about how meanings (e.g., the quantities corresponding to numerals) should be composed according to structured rules (e.g., order of operations). Our work shows that neural networks are not only able to infer something about the structured relationships implicit in their training data, but can also deploy this knowledge to guide the composition of individual meanings into composite wholes.

Abstract Image

合成处理出现在解决数学问题的神经网络中。
认知科学中一个长期存在的问题涉及人类认知中组合性的学习机制。人类可以推断出他们的感官观察(如听觉言语)中隐含的结构化关系(如语法规则),并利用这些知识指导将更简单的意义组合成复杂的整体。人工神经网络的最新进展表明,当大型模型在足够的语言数据上进行训练时,语法结构就会出现在它们的表示中。我们将这项工作扩展到数学推理领域,在那里可以制定关于意义(例如,与数字对应的数量)应该如何根据结构化规则(例如,操作顺序)组成的精确假设。我们的工作表明,神经网络不仅能够推断出训练数据中隐含的结构化关系,而且还可以利用这些知识来指导将单个意义组合成复合整体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信