Hendrik Nunner, Vincent Buskens, Mirjam Kretzschmar
{"title":"A model for the co-evolution of dynamic social networks and infectious disease dynamics.","authors":"Hendrik Nunner, Vincent Buskens, Mirjam Kretzschmar","doi":"10.1186/s40649-021-00098-9","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research shows an increasing interest in the interplay of social networks and infectious diseases. Many studies either neglect explicit changes in health behavior or consider networks to be static, despite empirical evidence that people seek to distance themselves from diseases in social networks. We propose an adaptable steppingstone model that integrates theories of social network formation from sociology, risk perception from health psychology, and infectious diseases from epidemiology. We argue that networking behavior in the context of infectious diseases can be described as a trade-off between the benefits, efforts, and potential harm a connection creates. Agent-based simulations of a specific model case show that: (i) high (perceived) health risks create strong social distancing, thus resulting in low epidemic sizes; (ii) small changes in health behavior can be decisive for whether the outbreak of a disease turns into an epidemic or not; (iii) high benefits for social connections create more ties per agent, providing large numbers of potential transmission routes and opportunities for the disease to travel faster, and (iv) higher costs of maintaining ties with infected others reduce final size of epidemics only when benefits of indirect ties are relatively low. These findings suggest a complex interplay between social network, health behavior, and infectious disease dynamics. Furthermore, they contribute to solving the issue that neglect of explicit health behavior in models of disease spread may create mismatches between observed transmissibility and epidemic sizes of model predictions.</p>","PeriodicalId":52145,"journal":{"name":"Computational Social Networks","volume":"8 1","pages":"19"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8495675/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40649-021-00098-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research shows an increasing interest in the interplay of social networks and infectious diseases. Many studies either neglect explicit changes in health behavior or consider networks to be static, despite empirical evidence that people seek to distance themselves from diseases in social networks. We propose an adaptable steppingstone model that integrates theories of social network formation from sociology, risk perception from health psychology, and infectious diseases from epidemiology. We argue that networking behavior in the context of infectious diseases can be described as a trade-off between the benefits, efforts, and potential harm a connection creates. Agent-based simulations of a specific model case show that: (i) high (perceived) health risks create strong social distancing, thus resulting in low epidemic sizes; (ii) small changes in health behavior can be decisive for whether the outbreak of a disease turns into an epidemic or not; (iii) high benefits for social connections create more ties per agent, providing large numbers of potential transmission routes and opportunities for the disease to travel faster, and (iv) higher costs of maintaining ties with infected others reduce final size of epidemics only when benefits of indirect ties are relatively low. These findings suggest a complex interplay between social network, health behavior, and infectious disease dynamics. Furthermore, they contribute to solving the issue that neglect of explicit health behavior in models of disease spread may create mismatches between observed transmissibility and epidemic sizes of model predictions.
期刊介绍:
Computational Social Networks showcases refereed papers dealing with all mathematical, computational and applied aspects of social computing. The objective of this journal is to advance and promote the theoretical foundation, mathematical aspects, and applications of social computing. Submissions are welcome which focus on common principles, algorithms and tools that govern network structures/topologies, network functionalities, security and privacy, network behaviors, information diffusions and influence, social recommendation systems which are applicable to all types of social networks and social media. Topics include (but are not limited to) the following: -Social network design and architecture -Mathematical modeling and analysis -Real-world complex networks -Information retrieval in social contexts, political analysts -Network structure analysis -Network dynamics optimization -Complex network robustness and vulnerability -Information diffusion models and analysis -Security and privacy -Searching in complex networks -Efficient algorithms -Network behaviors -Trust and reputation -Social Influence -Social Recommendation -Social media analysis -Big data analysis on online social networks This journal publishes rigorously refereed papers dealing with all mathematical, computational and applied aspects of social computing. The journal also includes reviews of appropriate books as special issues on hot topics.