Epitope-specific anti-PrP antibody toxicity: a comparative in-silico study of human and mouse prion proteins.

IF 1.9 3区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Utpal Kumar Adhikari, Mourad Tayebi
{"title":"Epitope-specific anti-PrP antibody toxicity: a comparative <i>in-silico</i> study of human and mouse prion proteins.","authors":"Utpal Kumar Adhikari,&nbsp;Mourad Tayebi","doi":"10.1080/19336896.2021.1964326","DOIUrl":null,"url":null,"abstract":"<p><p>Despite having therapeutic potential, anti-PrP antibodies caused a major controversy due to their neurotoxic effects. For instance, treating mice with ICSM antibodies delayed prion disease onset, but both were found to be either toxic or innocuous to neurons by researchers following cross-linking PrP<sup>C</sup>. In order to elucidate and understand the reasons that led to these contradictory outcomes, we conducted a comprehensive <i>in silico</i> study to assess the antibody-specific toxicity. Since most therapeutic anti-PrP antibodies were generated against human truncated recombinant PrP<sup>91-231</sup> or full-length mouse PrP<sup>23-231</sup>, we reasoned that host specificity (human vs murine) of PrP<sup>C</sup> might influence the nature of the specific epitopes recognized by these antibodies at the structural level possibly explaining the 'toxicity' discrepancies reported previously. Initially, molecular dynamics simulation and pro-motif analysis of full-length human (hu)PrP and mouse (mo)PrP 3D structure displayed conspicuous structural differences between huPrP and moPrP. We identified 10 huPrP and 6 moPrP linear B-cell epitopes from the prion protein 3D structure where 5 out of 10 huPrP and 3 out of 6 moPrP B-cell epitopes were predicted to be potentially toxic in immunoinformatics approaches. Herein, we demonstrate that some of the predicted potentially 'toxic' epitopes identified by the <i>in silico</i> analysis were similar to the epitopes recognized by the toxic antibodies such as ICSM18 (146-159), POM1 (138-147), D18 (133-157), ICSM35 (91-110), D13 (95-103) and POM3 (95-100). This <i>in silico</i> study reveals the role of host specificity of PrP<sup>C</sup> in epitope-specific anti-PrP antibody toxicity.</p>","PeriodicalId":54585,"journal":{"name":"Prion","volume":"15 1","pages":"155-176"},"PeriodicalIF":1.9000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/10/99/KPRN_15_1964326.PMC8900626.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prion","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336896.2021.1964326","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite having therapeutic potential, anti-PrP antibodies caused a major controversy due to their neurotoxic effects. For instance, treating mice with ICSM antibodies delayed prion disease onset, but both were found to be either toxic or innocuous to neurons by researchers following cross-linking PrPC. In order to elucidate and understand the reasons that led to these contradictory outcomes, we conducted a comprehensive in silico study to assess the antibody-specific toxicity. Since most therapeutic anti-PrP antibodies were generated against human truncated recombinant PrP91-231 or full-length mouse PrP23-231, we reasoned that host specificity (human vs murine) of PrPC might influence the nature of the specific epitopes recognized by these antibodies at the structural level possibly explaining the 'toxicity' discrepancies reported previously. Initially, molecular dynamics simulation and pro-motif analysis of full-length human (hu)PrP and mouse (mo)PrP 3D structure displayed conspicuous structural differences between huPrP and moPrP. We identified 10 huPrP and 6 moPrP linear B-cell epitopes from the prion protein 3D structure where 5 out of 10 huPrP and 3 out of 6 moPrP B-cell epitopes were predicted to be potentially toxic in immunoinformatics approaches. Herein, we demonstrate that some of the predicted potentially 'toxic' epitopes identified by the in silico analysis were similar to the epitopes recognized by the toxic antibodies such as ICSM18 (146-159), POM1 (138-147), D18 (133-157), ICSM35 (91-110), D13 (95-103) and POM3 (95-100). This in silico study reveals the role of host specificity of PrPC in epitope-specific anti-PrP antibody toxicity.

Abstract Image

Abstract Image

Abstract Image

表位特异性抗prp抗体毒性:人类和小鼠朊病毒蛋白的比较计算机研究。
尽管具有治疗潜力,但抗prp抗体由于其神经毒性作用而引起了重大争议。例如,用ICSM抗体治疗小鼠延缓了朊病毒疾病的发病,但是研究人员在交叉连接PrPC后发现,这两种抗体对神经元要么有毒,要么无害。为了阐明和理解导致这些相互矛盾的结果的原因,我们进行了一项全面的计算机研究来评估抗体特异性毒性。由于大多数治疗性抗prp抗体是针对人类截断重组PrP91-231或全长小鼠PrP23-231产生的,我们推断,PrPC的宿主特异性(人与小鼠)可能会影响这些抗体在结构水平上识别的特异性表位的性质,这可能解释了之前报道的“毒性”差异。首先,对人(hu)PrP和小鼠(mo)PrP的全长三维结构进行分子动力学模拟和前基序分析,发现huPrP和moPrP在结构上存在显著差异。我们从朊病毒蛋白3D结构中鉴定出10个huPrP和6个moPrP线性b细胞表位,其中10个huPrP和6个moPrP b细胞表位中有5个在免疫信息学方法中被预测为潜在毒性。在此,我们证明了通过硅分析识别的一些预测的潜在“毒性”表位与有毒抗体如ICSM18(146-159)、POM1(138-147)、D18(133-157)、ICSM35(91-110)、D13(95-103)和POM3(95-100)识别的表位相似。这项计算机研究揭示了宿主特异性PrPC在表位特异性抗prp抗体毒性中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Prion
Prion 生物-生化与分子生物学
CiteScore
5.20
自引率
4.30%
发文量
13
审稿时长
6-12 weeks
期刊介绍: Prion is the first international peer-reviewed open access journal to focus exclusively on protein folding and misfolding, protein assembly disorders, protein-based and structural inheritance. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The overriding criteria for publication in Prion are originality, scientific merit and general interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信