Machine Learning Predictions of Cancer Driver Mutations.

E Joseph Jordan, Ravi Radhakrishnan
{"title":"Machine Learning Predictions of Cancer Driver Mutations.","authors":"E Joseph Jordan,&nbsp;Ravi Radhakrishnan","doi":"10.1109/iarwisoci.2014.7034632","DOIUrl":null,"url":null,"abstract":"<p><p>A method to predict the activation status of kinase domain mutations in cancer is presented. This method, which makes use of the machine learning technique support vector machines (SVM), has applications to cancer treatment, as well as numerous other diseases that involve kinase misregulation.</p>","PeriodicalId":93358,"journal":{"name":"Proceedings of the 2014 6th International Advanced Research Workshop on In Silico Oncology and Cancer Investigation : the CHIC Project Workshop (IARWISOCI) : Athens, Greece, 3-4 November 2014. International Advanced Research Workshop on...","volume":"2014 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/iarwisoci.2014.7034632","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 6th International Advanced Research Workshop on In Silico Oncology and Cancer Investigation : the CHIC Project Workshop (IARWISOCI) : Athens, Greece, 3-4 November 2014. International Advanced Research Workshop on...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iarwisoci.2014.7034632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A method to predict the activation status of kinase domain mutations in cancer is presented. This method, which makes use of the machine learning technique support vector machines (SVM), has applications to cancer treatment, as well as numerous other diseases that involve kinase misregulation.

Abstract Image

癌症驱动突变的机器学习预测。
提出了一种预测癌症激酶结构域突变激活状态的方法。该方法利用机器学习技术支持向量机(SVM),应用于癌症治疗以及许多其他涉及激酶失调的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信