Hongguang Pan, Haoqian Song, Qi Zhang, Wenyu Mi, Jinggao Sun
{"title":"Auxiliary controller design and performance comparative analysis in closed-loop brain-machine interface system.","authors":"Hongguang Pan, Haoqian Song, Qi Zhang, Wenyu Mi, Jinggao Sun","doi":"10.1007/s00422-021-00897-3","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-machine interface (BMI) can realize information interaction between the brain and external devices, and yet the control accuracy is limited by the change of electroencephalogram signals. The introduction of auxiliary controller can overcome the above problems, but the performance of different auxiliary controllers is quite different. Hence, in this paper, we comprehensively compare and analyze the performance of different auxiliary controllers to provide a theoretical basis for designing BMI system. The main work includes: (1) designing four kinds of auxiliary controllers based on simultaneous perturbation stochastic approximation-function approximator (SPSA-FA), iterative feedback tuning-PID (IFT-PID), model predictive control (MPC) and model-free control (MFC); (2) based on the model of improved single-joint information transmission, constructing the closed-loop BMI systems with the decoder-based Wiener filter; and (3) comparing their performance in the constructed closed-loop BMI systems for dynamic motion restoration. The results show that the order of tracking accuracy is MPC, IFT-PID, SPSA-FA, MFC, and the order of time consumed is opposite. A good control effectiveness is achieved at the expense of time, so a suitable auxiliary controller should be selected according to the actual requirements.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-021-00897-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 1
Abstract
Brain-machine interface (BMI) can realize information interaction between the brain and external devices, and yet the control accuracy is limited by the change of electroencephalogram signals. The introduction of auxiliary controller can overcome the above problems, but the performance of different auxiliary controllers is quite different. Hence, in this paper, we comprehensively compare and analyze the performance of different auxiliary controllers to provide a theoretical basis for designing BMI system. The main work includes: (1) designing four kinds of auxiliary controllers based on simultaneous perturbation stochastic approximation-function approximator (SPSA-FA), iterative feedback tuning-PID (IFT-PID), model predictive control (MPC) and model-free control (MFC); (2) based on the model of improved single-joint information transmission, constructing the closed-loop BMI systems with the decoder-based Wiener filter; and (3) comparing their performance in the constructed closed-loop BMI systems for dynamic motion restoration. The results show that the order of tracking accuracy is MPC, IFT-PID, SPSA-FA, MFC, and the order of time consumed is opposite. A good control effectiveness is achieved at the expense of time, so a suitable auxiliary controller should be selected according to the actual requirements.
期刊介绍:
Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.