A Meta-Analysis of Rhesus Macaques (Macaca mulatta), Cynomolgus Macaques (Macaca fascicularis), African green monkeys (Chlorocebus aethiops), and Ferrets (Mustela putorius furo) as Large Animal Models for COVID-19.
Alexandra N Witt, Rachel D Green, Andrew N Winterborn
{"title":"A Meta-Analysis of Rhesus Macaques (<i>Macaca mulatta</i>), Cynomolgus Macaques (<i>Macaca fascicularis</i>), African green monkeys (<i>Chlorocebus aethiops</i>), and Ferrets (<i>Mustela putorius furo</i>) as Large Animal Models for COVID-19.","authors":"Alexandra N Witt, Rachel D Green, Andrew N Winterborn","doi":"10.30802/AALAS-CM-21-000032","DOIUrl":null,"url":null,"abstract":"<p><p>Animal models are at the forefront of biomedical research for studies of viral transmission, vaccines, and pathogenesis, yet the need for an ideal large animal model for COVID-19 remains. We used a meta-analysis to evaluate published data relevant to this need. Our literature survey contained 22 studies with data relevant to the incidence of common COVID-19 symptoms in rhesus macaques (<i>Macaca mulatta</i>), cynomolgus macaques (<i>Macaca fascicularis</i>), African green monkeys (<i>Chlorocebus aethiops</i>), and ferrets (<i>Mustela putorius furo</i>). Rhesus macaques had leukocytosis on Day 1 after inoculation and pneumonia on Days 7 and 14 after inoculation, in frequencies that were similar enough to humans to reject the null hypothesis of a Fisher exact test. However, the differences in overall presentation of disease were too different from that of humans to successfully identify any of these 4 species as an ideal large animal of COVID-19. The greatest limitation to the current study is a lack of standardization in experimentation and reporting. To expand our understanding of the pathology of COVID-19 and evalu- ate vaccine immunogenicity, we must extend the unprecedented collaboration that has arisen in the study of COVID-19 to include standardization of animal-based research in an effort to find the optimal animal model.</p>","PeriodicalId":10659,"journal":{"name":"Comparative medicine","volume":" ","pages":"433-441"},"PeriodicalIF":1.3000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594258/pdf/cm21000032.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30802/AALAS-CM-21-000032","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Animal models are at the forefront of biomedical research for studies of viral transmission, vaccines, and pathogenesis, yet the need for an ideal large animal model for COVID-19 remains. We used a meta-analysis to evaluate published data relevant to this need. Our literature survey contained 22 studies with data relevant to the incidence of common COVID-19 symptoms in rhesus macaques (Macaca mulatta), cynomolgus macaques (Macaca fascicularis), African green monkeys (Chlorocebus aethiops), and ferrets (Mustela putorius furo). Rhesus macaques had leukocytosis on Day 1 after inoculation and pneumonia on Days 7 and 14 after inoculation, in frequencies that were similar enough to humans to reject the null hypothesis of a Fisher exact test. However, the differences in overall presentation of disease were too different from that of humans to successfully identify any of these 4 species as an ideal large animal of COVID-19. The greatest limitation to the current study is a lack of standardization in experimentation and reporting. To expand our understanding of the pathology of COVID-19 and evalu- ate vaccine immunogenicity, we must extend the unprecedented collaboration that has arisen in the study of COVID-19 to include standardization of animal-based research in an effort to find the optimal animal model.
期刊介绍:
Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.