Adaptive Kalman Filtering.

Steven D Brown, Sarah C Rutan
{"title":"Adaptive Kalman Filtering.","authors":"Steven D Brown,&nbsp;Sarah C Rutan","doi":"10.6028/jres.090.032","DOIUrl":null,"url":null,"abstract":"<p><p>The increased power of small computers makes the use of parameter estimation methods attractive. Such methods have a number of uses in analytical chemistry. When valid models are available, many methods work well, but when models used in the estimation are in error, most methods fail. Methods based on the Kalman filter, a linear recursive estimator, may be modified to perform parameter estimation with erroneous models. Modifications to the filter involve allowing the filter to adapt the measurement model to the experimental data through matching the theoretical and observed covariance of the filter innovations sequence. The adaptive filtering methods that result have a number of applications in analytical chemistry.</p>","PeriodicalId":93321,"journal":{"name":"Journal of research of the National Bureau of Standards (1977)","volume":"90 6","pages":"403-407"},"PeriodicalIF":0.0000,"publicationDate":"1985-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644984/pdf/jres-90-403.pdf","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards (1977)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.090.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 70

Abstract

The increased power of small computers makes the use of parameter estimation methods attractive. Such methods have a number of uses in analytical chemistry. When valid models are available, many methods work well, but when models used in the estimation are in error, most methods fail. Methods based on the Kalman filter, a linear recursive estimator, may be modified to perform parameter estimation with erroneous models. Modifications to the filter involve allowing the filter to adapt the measurement model to the experimental data through matching the theoretical and observed covariance of the filter innovations sequence. The adaptive filtering methods that result have a number of applications in analytical chemistry.

自适应卡尔曼滤波。
小型计算机性能的提高使得参数估计方法的使用具有吸引力。这种方法在分析化学中有许多用途。当有效的模型可用时,许多方法工作得很好,但是当估计中使用的模型出错时,大多数方法都失败了。基于线性递归估计器卡尔曼滤波的方法可能会被修改以使用错误的模型进行参数估计。对滤波器的修改包括允许滤波器通过匹配滤波器创新序列的理论协方差和观测协方差来使测量模型适应实验数据。由此产生的自适应滤波方法在分析化学中有许多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信