Strategies for the Reduction and Interpretation of Multicomponent Spectral Data.

Isiah M Warner, S L Neal, T M Rossi
{"title":"Strategies for the Reduction and Interpretation of Multicomponent Spectral Data.","authors":"Isiah M Warner,&nbsp;S L Neal,&nbsp;T M Rossi","doi":"10.6028/jres.090.047","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorescence data can be rapidly acquired in the form of an emission-excitation matrix (EEM) using a novel fluorometer called a video fluorometer (VF). An EEM array of 4096 data points composed of fluorescence intensity measured at 64 different emission wavelengths and excited at 64 different excitation wavelengths can be acquired in less than one second. The time-limiting factor in using this information for analytical measurement is the interpretation step. Consequently, sophisticated computer algorithms must be developed to aid in interpretation of such large data sets. For \"<i>r</i>\" number of components, the EEM data matrix, <b>M</b>, can be conveniently represented as <dispformula> <math><mrow><mi>M</mi> <mo>=</mo> <munderover><mo>∑</mo> <mrow><mi>i</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>r</mi></munderover> <mrow><msub><mi>α</mi> <mi>i</mi></msub> </mrow> <mi>x</mi> <mo>(</mo> <mi>i</mi> <mo>)</mo> <mi>y</mi> <msup><mrow><mo>(</mo> <mi>i</mi> <mo>)</mo></mrow> <mi>t</mi></msup> </mrow> </math> </dispformula> where <b>x</b>(<i>i</i>) and <b>y</b>(<i>i</i>) <sup><i>t</i></sup> are the observed excitation and emission spectra of the <i>i</i> <sup>th</sup> component and <i>α</i> <sub><i>i</i></sub> is a concentration dependent parameter. Such a data matrix is readily interpreted using linear algebraic procedures. Recently a new instrument has been described which rapidly acquires fluorescence detected circular dichroism (FDCD) data for chiral fluorophores as a function of multiple excitation and emission wavelengths. The FDCD matrix is similar in form to EEM data. However, since the FDCD matrix may have legitimate negative entries while the EEM is theoretically non-negative, different assumptions are required. This paper will describe the mathematical algorithms developed in this laboratory for the interpretation of the EEM in various forms. Particular emphasis will be placed on linear algebraic and two-dimensional Fourier Transform procedures.</p>","PeriodicalId":93321,"journal":{"name":"Journal of research of the National Bureau of Standards (1977)","volume":"90 6","pages":"487-493"},"PeriodicalIF":0.0000,"publicationDate":"1985-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644972/pdf/jres-90-487.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards (1977)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.090.047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fluorescence data can be rapidly acquired in the form of an emission-excitation matrix (EEM) using a novel fluorometer called a video fluorometer (VF). An EEM array of 4096 data points composed of fluorescence intensity measured at 64 different emission wavelengths and excited at 64 different excitation wavelengths can be acquired in less than one second. The time-limiting factor in using this information for analytical measurement is the interpretation step. Consequently, sophisticated computer algorithms must be developed to aid in interpretation of such large data sets. For "r" number of components, the EEM data matrix, M, can be conveniently represented as M = i = 1 r α i x ( i ) y ( i ) t where x(i) and y(i) t are the observed excitation and emission spectra of the i th component and α i is a concentration dependent parameter. Such a data matrix is readily interpreted using linear algebraic procedures. Recently a new instrument has been described which rapidly acquires fluorescence detected circular dichroism (FDCD) data for chiral fluorophores as a function of multiple excitation and emission wavelengths. The FDCD matrix is similar in form to EEM data. However, since the FDCD matrix may have legitimate negative entries while the EEM is theoretically non-negative, different assumptions are required. This paper will describe the mathematical algorithms developed in this laboratory for the interpretation of the EEM in various forms. Particular emphasis will be placed on linear algebraic and two-dimensional Fourier Transform procedures.

多组分光谱数据的还原和解释策略。
荧光数据可以使用一种称为视频荧光计(VF)的新型荧光计以发射激发矩阵(EEM)的形式快速获取。在不到1秒的时间内,可以获得由64种不同发射波长下测量的荧光强度和64种不同激发波长下激发的4096个数据点组成的EEM阵列。使用这些信息进行分析测量的时间限制因素是解释步骤。因此,必须开发复杂的计算机算法来帮助解释如此大的数据集。对于“r”个组分,EEM数据矩阵M可以方便地表示为M =∑i = 1 r α ix (i) y(i) t,其中x(i)和y(i) t是第i个组分的观测激发和发射光谱,α i是浓度相关参数。这样的数据矩阵很容易用线性代数程序来解释。最近描述了一种新的仪器,它可以快速获取手性荧光团的荧光检测圆二色性(FDCD)数据,作为多个激发和发射波长的函数。FDCD矩阵在形式上与EEM数据相似。然而,由于FDCD矩阵可能有合法的负项,而EEM理论上是非负的,因此需要不同的假设。本文将描述在这个实验室开发的数学算法,用于以各种形式解释EEM。特别强调将放在线性代数和二维傅里叶变换程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信