Regression Analysis of Compartmental Models.

T L Lai
{"title":"Regression Analysis of Compartmental Models.","authors":"T L Lai","doi":"10.6028/jres.090.055","DOIUrl":null,"url":null,"abstract":"<p><p>Herein we study the problem of assessing, on the basis of noisy and incomplete observations, how much information there is in the data for model identification in compartmental systems. The underlying concept is that of an \"information distance\" between competing models, and estimation of this distance on the basis of the given data is discussed. Useful reduction of the dimensionality of the corresponding least squares problem is accomplished by regarding the decay rate constants as primary parameters of interest and the other parameters of the model as nuisance parameters. Estimation of the decay rate function is also discussed.</p>","PeriodicalId":93321,"journal":{"name":"Journal of research of the National Bureau of Standards (1977)","volume":"90 6","pages":"525-530"},"PeriodicalIF":0.0000,"publicationDate":"1985-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644964/pdf/jres-90-525.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of research of the National Bureau of Standards (1977)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/jres.090.055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Herein we study the problem of assessing, on the basis of noisy and incomplete observations, how much information there is in the data for model identification in compartmental systems. The underlying concept is that of an "information distance" between competing models, and estimation of this distance on the basis of the given data is discussed. Useful reduction of the dimensionality of the corresponding least squares problem is accomplished by regarding the decay rate constants as primary parameters of interest and the other parameters of the model as nuisance parameters. Estimation of the decay rate function is also discussed.

区隔模型的回归分析。
在此,我们研究了在有噪声和不完全观测的基础上,评估区隔系统中模型识别数据中有多少信息的问题。其基本概念是竞争模型之间的“信息距离”,并讨论了基于给定数据的该距离的估计。通过将衰减率常数作为主要参数,而将模型的其他参数作为干扰参数,可以有效地降低相应最小二乘问题的维数。对衰减率函数的估计也进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信