Prospective adverse event risk evaluation in clinical trials.

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES
Health Care Management Science Pub Date : 2022-03-01 Epub Date: 2021-09-24 DOI:10.1007/s10729-021-09584-y
Abhishake Kundu, Felipe Feijoo, Diego A Martinez, Manuel Hermosilla, Timothy Matis
{"title":"Prospective adverse event risk evaluation in clinical trials.","authors":"Abhishake Kundu,&nbsp;Felipe Feijoo,&nbsp;Diego A Martinez,&nbsp;Manuel Hermosilla,&nbsp;Timothy Matis","doi":"10.1007/s10729-021-09584-y","DOIUrl":null,"url":null,"abstract":"<p><p>Proactive and objective regulatory risk management of ongoing clinical trials is limited, especially when it involves the safety of the trial. We seek to prospectively evaluate the risk of facing adverse outcomes from standardized and routinely collected protocol data. We conducted a retrospective cohort study of 2860 Phase 2 and Phase 3 trials that were started and completed between 1993 and 2017 and documented in ClinicalTrials.gov. Adverse outcomes considered in our work include Serious or Non-Serious as per the ClinicalTrials.gov definition. Random-forest-based prediction models were created to determine a trial's risk of adverse outcomes based on protocol data that is available before the start of a trial enrollment. A trial's risk is defined by dichotomic (classification) and continuous (log-odds) risk scores. The classification-based prediction models had an area under the curve (AUC) ranging from 0.865 to 0.971 and the continuous-score based models indicate a rank correlation of 0.6-0.66 (with p-values < 0.001), thereby demonstrating improved identification of risk of adverse outcomes. Whereas related frameworks highlight the prediction benefits of incorporating data that is highly context-specific, our results indicate that Adverse Event (AE) risks can be reliably predicted through a framework of mild data requirements. We propose three potential applications in leading regulatory remits, highlighting opportunities to support regulatory oversight and informed consent decisions.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"25 1","pages":"89-99"},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-021-09584-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Proactive and objective regulatory risk management of ongoing clinical trials is limited, especially when it involves the safety of the trial. We seek to prospectively evaluate the risk of facing adverse outcomes from standardized and routinely collected protocol data. We conducted a retrospective cohort study of 2860 Phase 2 and Phase 3 trials that were started and completed between 1993 and 2017 and documented in ClinicalTrials.gov. Adverse outcomes considered in our work include Serious or Non-Serious as per the ClinicalTrials.gov definition. Random-forest-based prediction models were created to determine a trial's risk of adverse outcomes based on protocol data that is available before the start of a trial enrollment. A trial's risk is defined by dichotomic (classification) and continuous (log-odds) risk scores. The classification-based prediction models had an area under the curve (AUC) ranging from 0.865 to 0.971 and the continuous-score based models indicate a rank correlation of 0.6-0.66 (with p-values < 0.001), thereby demonstrating improved identification of risk of adverse outcomes. Whereas related frameworks highlight the prediction benefits of incorporating data that is highly context-specific, our results indicate that Adverse Event (AE) risks can be reliably predicted through a framework of mild data requirements. We propose three potential applications in leading regulatory remits, highlighting opportunities to support regulatory oversight and informed consent decisions.

临床试验中前瞻性不良事件风险评价。
对正在进行的临床试验的前瞻性和客观的监管风险管理是有限的,特别是当它涉及到试验的安全性时。我们试图从标准化和常规收集的方案数据中前瞻性地评估面临不良结果的风险。我们对1993年至2017年间开始和完成的2860项2期和3期试验进行了回顾性队列研究,并记录在ClinicalTrials.gov上。根据ClinicalTrials.gov的定义,我们的工作中考虑的不良后果包括严重或非严重。建立了基于随机森林的预测模型,以确定试验不良结果的风险,该模型基于试验登记开始前可用的方案数据。试验的风险由二分(分类)和连续(对数赔率)风险评分来定义。基于分类的预测模型的曲线下面积(AUC)范围为0.865 ~ 0.971,基于连续评分的预测模型的等级相关性为0.6 ~ 0.66 (p值)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信