Wei Xiong, Hua Chen, Jiequan Lu, Jie Ren, Chen Nie, Ruijuan Liang, Feng Liu, Baofeng Huang, Yu Luo
{"title":"IL-39 increases ROS production and promotes the phosphorylation of p38 MAPK in the apoptotic cardiomyocytes.","authors":"Wei Xiong, Hua Chen, Jiequan Lu, Jie Ren, Chen Nie, Ruijuan Liang, Feng Liu, Baofeng Huang, Yu Luo","doi":"10.5603/FHC.a2021.0019","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The cytokine interleukin (IL)-39 is a novel member of the IL-12 family. Our previous study found that the serum level of IL-39 significantly increased in patients with acute myocardial infarction. However, the role of IL-39 in cardiomyocyte apoptosis remains unclear.</p><p><strong>Material and methods: </strong>In this study, the cultured mouse HL-1 cardiomyocytes were incubated with PBS, 0-100 ng/mL IL-39, 200 μM H2O2 or 20 μM Trolox.</p><p><strong>Results: </strong>IL-39 promoted the production of intracellular reactive oxygen species (ROS) in a concentration dependent manner in HL-1 cardiomyocytes. IL-39 and H2O2 both significantly promoted the production of intracellular ROS, increased the level of intracellular CCL2, stimulated the apoptotic progress of cardiomyocytes, increased the mRNA and protein expression levels of Bax, caspase-3, and p-p38 MAPK, and decreased the mRNA and protein expression levels of Bcl-2. ROS production, CCL2 level, cardiomyocyte apoptosis, and expression of Bax, caspase-3, and p-p38 MAPK were significantly amplified by the administration of IL-39 combined with H2O2, and these processes were significantly alleviated by an antioxidant Trolox.</p><p><strong>Conclusion: </strong>This study was novel in revealing that IL-39 promoted apoptosis by stimulating the phosphorylation of p38 MAPK in mouse HL-1 cardiomyocytes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5603/FHC.a2021.0019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Introduction: The cytokine interleukin (IL)-39 is a novel member of the IL-12 family. Our previous study found that the serum level of IL-39 significantly increased in patients with acute myocardial infarction. However, the role of IL-39 in cardiomyocyte apoptosis remains unclear.
Material and methods: In this study, the cultured mouse HL-1 cardiomyocytes were incubated with PBS, 0-100 ng/mL IL-39, 200 μM H2O2 or 20 μM Trolox.
Results: IL-39 promoted the production of intracellular reactive oxygen species (ROS) in a concentration dependent manner in HL-1 cardiomyocytes. IL-39 and H2O2 both significantly promoted the production of intracellular ROS, increased the level of intracellular CCL2, stimulated the apoptotic progress of cardiomyocytes, increased the mRNA and protein expression levels of Bax, caspase-3, and p-p38 MAPK, and decreased the mRNA and protein expression levels of Bcl-2. ROS production, CCL2 level, cardiomyocyte apoptosis, and expression of Bax, caspase-3, and p-p38 MAPK were significantly amplified by the administration of IL-39 combined with H2O2, and these processes were significantly alleviated by an antioxidant Trolox.
Conclusion: This study was novel in revealing that IL-39 promoted apoptosis by stimulating the phosphorylation of p38 MAPK in mouse HL-1 cardiomyocytes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.