Heat memory in plants: histone modifications, nucleosome positioning and miRNA accumulation alter heat memory gene expression.

IF 1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Genes & genetic systems Pub Date : 2022-02-23 Epub Date: 2021-09-16 DOI:10.1266/ggs.21-00040
Nobutoshi Yamaguchi
{"title":"Heat memory in plants: histone modifications, nucleosome positioning and miRNA accumulation alter heat memory gene expression.","authors":"Nobutoshi Yamaguchi","doi":"10.1266/ggs.21-00040","DOIUrl":null,"url":null,"abstract":"<p><p>Plant adaptation to high temperature, often referred to as heat acclimation, is a process in which exposure to moderately high temperatures increases a plant's tolerance to subsequent (normally) lethal high temperatures. Plants store heat experience information (heat memory) obtained from previous exposure to high temperatures for several days and develop future temperature responsiveness. However, our understanding of heat acclimation is very limited. In the model plant Arabidopsis thaliana, changes in the expression patterns of heat memory genes play a central role in regulating plant survival and adaptation to recurring heat stress. Heat stress-related transcription factors and histone-modifying enzymes function in the sensitized expression of heat memory genes via the deposition and removal of histone modifications. Chromatin-remodeling complexes and miRNA accumulation also trigger the sustained expression of heat memory genes. In this review, I describe studies of heat acclimation that have provided important insights into the molecular mechanisms that lead to flexible and reversible gene expression upon heat stress in plants.</p>","PeriodicalId":12690,"journal":{"name":"Genes & genetic systems","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genetic systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1266/ggs.21-00040","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Plant adaptation to high temperature, often referred to as heat acclimation, is a process in which exposure to moderately high temperatures increases a plant's tolerance to subsequent (normally) lethal high temperatures. Plants store heat experience information (heat memory) obtained from previous exposure to high temperatures for several days and develop future temperature responsiveness. However, our understanding of heat acclimation is very limited. In the model plant Arabidopsis thaliana, changes in the expression patterns of heat memory genes play a central role in regulating plant survival and adaptation to recurring heat stress. Heat stress-related transcription factors and histone-modifying enzymes function in the sensitized expression of heat memory genes via the deposition and removal of histone modifications. Chromatin-remodeling complexes and miRNA accumulation also trigger the sustained expression of heat memory genes. In this review, I describe studies of heat acclimation that have provided important insights into the molecular mechanisms that lead to flexible and reversible gene expression upon heat stress in plants.

植物的热记忆:组蛋白修饰、核小体定位和miRNA积累改变热记忆基因的表达。
植物对高温的适应,通常被称为热驯化,是一个暴露在中等高温下增加植物对随后(通常)致命高温的耐受性的过程。植物可以储存从高温环境中获得的热经验信息(热记忆)数天,并发展出未来的温度响应能力。然而,我们对热驯化的认识非常有限。在模式植物拟南芥(Arabidopsis thaliana)中,热记忆基因表达模式的变化在调节植物生存和适应反复热胁迫中起着核心作用。热应激相关转录因子和组蛋白修饰酶通过沉积和去除组蛋白修饰在热记忆基因的敏化表达中起作用。染色质重塑复合物和miRNA积累也触发热记忆基因的持续表达。在这篇综述中,我描述了热驯化的研究,这些研究为植物热胁迫下导致灵活和可逆的基因表达的分子机制提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes & genetic systems
Genes & genetic systems 生物-生化与分子生物学
CiteScore
1.50
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Genes & Genetic Systems , formerly the Japanese Journal of Genetics , is published bimonthly by the Genetics Society of Japan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信