Design of a FAIR digital data health infrastructure in Africa for COVID-19 reporting and research

Mirjam van Reisen, Francisca Oladipo, Mia Stokmans, Mouhamed Mpezamihgo, Sakinat Folorunso, Erik Schultes, Mariam Basajja, Aliya Aktau, Samson Yohannes Amare, Getu Tadele Taye, Putu Hadi Purnama Jati, Kudakwashe Chindoza, Morgane Wirtz, Meriem Ghardallou, Gertjan van Stam, Wondimu Ayele, Reginald Nalugala, Ibrahim Abdullahi, Obinna Osigwe, John Graybeal, Araya Abrha Medhanyie, Abdullahi Abubakar Kawu, Fenghong Liu, Katy Wolstencroft, Erik Flikkenschild, Yi Lin, Joëlle Stocker, Mark A. Musen
{"title":"Design of a FAIR digital data health infrastructure in Africa for COVID-19 reporting and research","authors":"Mirjam van Reisen,&nbsp;Francisca Oladipo,&nbsp;Mia Stokmans,&nbsp;Mouhamed Mpezamihgo,&nbsp;Sakinat Folorunso,&nbsp;Erik Schultes,&nbsp;Mariam Basajja,&nbsp;Aliya Aktau,&nbsp;Samson Yohannes Amare,&nbsp;Getu Tadele Taye,&nbsp;Putu Hadi Purnama Jati,&nbsp;Kudakwashe Chindoza,&nbsp;Morgane Wirtz,&nbsp;Meriem Ghardallou,&nbsp;Gertjan van Stam,&nbsp;Wondimu Ayele,&nbsp;Reginald Nalugala,&nbsp;Ibrahim Abdullahi,&nbsp;Obinna Osigwe,&nbsp;John Graybeal,&nbsp;Araya Abrha Medhanyie,&nbsp;Abdullahi Abubakar Kawu,&nbsp;Fenghong Liu,&nbsp;Katy Wolstencroft,&nbsp;Erik Flikkenschild,&nbsp;Yi Lin,&nbsp;Joëlle Stocker,&nbsp;Mark A. Musen","doi":"10.1002/ggn2.10050","DOIUrl":null,"url":null,"abstract":"<p>The limited volume of COVID-19 data from Africa raises concerns for global genome research, which requires a diversity of genotypes for accurate disease prediction, including on the provenance of the new SARS-CoV-2 mutations. The Virus Outbreak Data Network (VODAN)-Africa studied the possibility of increasing the production of clinical data, finding concerns about data ownership, and the limited use of health data for quality treatment at point of care. To address this, VODAN Africa developed an architecture to record clinical health data and research data collected on the incidence of COVID-19, producing these as human- and machine-readable data objects in a distributed architecture of locally governed, linked, human- and machine-readable data. This architecture supports analytics at the point of care and—through data visiting, across facilities—for generic analytics. An algorithm was run across FAIR Data Points to visit the distributed data and produce aggregate findings. The FAIR data architecture is deployed in Uganda, Ethiopia, Liberia, Nigeria, Kenya, Somalia, Tanzania, Zimbabwe, and Tunisia.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/ggn2.10050","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced genetics (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ggn2.10050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

The limited volume of COVID-19 data from Africa raises concerns for global genome research, which requires a diversity of genotypes for accurate disease prediction, including on the provenance of the new SARS-CoV-2 mutations. The Virus Outbreak Data Network (VODAN)-Africa studied the possibility of increasing the production of clinical data, finding concerns about data ownership, and the limited use of health data for quality treatment at point of care. To address this, VODAN Africa developed an architecture to record clinical health data and research data collected on the incidence of COVID-19, producing these as human- and machine-readable data objects in a distributed architecture of locally governed, linked, human- and machine-readable data. This architecture supports analytics at the point of care and—through data visiting, across facilities—for generic analytics. An algorithm was run across FAIR Data Points to visit the distributed data and produce aggregate findings. The FAIR data architecture is deployed in Uganda, Ethiopia, Liberia, Nigeria, Kenya, Somalia, Tanzania, Zimbabwe, and Tunisia.

Abstract Image

为COVID-19报告和研究在非洲设计公平数字数据卫生基础设施
来自非洲的COVID-19数据量有限,这引起了人们对全球基因组研究的关注,因为全球基因组研究需要多种基因型才能准确预测疾病,包括新的SARS-CoV-2突变的来源。病毒爆发数据网络(VODAN)-非洲研究了增加临床数据生产的可能性,发现了对数据所有权的关切,以及在护理点对高质量治疗使用卫生数据的有限性。为了解决这一问题,VODAN非洲开发了一种架构,用于记录临床健康数据和收集到的关于COVID-19发病率的研究数据,并将这些数据作为人类和机器可读的数据对象,在一个由本地管理、相互关联的人类和机器可读数据组成的分布式架构中生成。该体系结构支持在护理点进行分析,并通过跨设施的数据访问进行通用分析。在FAIR数据点上运行一种算法来访问分布式数据并产生汇总结果。FAIR数据架构部署在乌干达、埃塞俄比亚、利比里亚、尼日利亚、肯尼亚、索马里、坦桑尼亚、津巴布韦和突尼斯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信