Evaluation of the liver and blood micronucleus, and comet assay end points in a 14-day repeated-dose study with methyl carbamate and 1,3-propane sultone.
{"title":"Evaluation of the liver and blood micronucleus, and comet assay end points in a 14-day repeated-dose study with methyl carbamate and 1,3-propane sultone.","authors":"Honggang Tu, Chunrong Yu, Wen Tong, Changhui Zhou, Ruowan Li, Pengcheng Huang, Qingli Wang, Yan Chang","doi":"10.1093/mutage/geab034","DOIUrl":null,"url":null,"abstract":"<p><p>The repeated-dose liver micronucleus (RDLMN) assay is a novel method for detecting genotoxic chemicals. Two carcinogens methyl carbamate (MC) and 1,3-propane sultone (PS) were evaluated for the liver micronucleus in a 14-day repeated-dose study with Crl: CD (SD) IGS rats. Additionally, micronucleated reticulocytes (MN-RET) in peripheral blood and DNA damage (alkaline comet assay) in the liver were also assessed in the same animals. Ten groups of five male Crl: CD (SD) IGS rats were treated once daily with MC (300, 600 or 1200 mg/kg/day), PS (37.5, 75 or 150 mg/kg/day), negative control or three positive controls by oral gavage for 15 days. Blood samples were collected at 3 h after the last administration for determining MN-RET frequencies (%MN-RET), and the livers were sampled for determining the frequency of micronuclei and DNA damage. MC was negative in the comet assay, liver micronucleus assay and reticulocyte micronucleus assay, while PS was positive in all three assays. These results are consistent with the previous genotoxic findings of MC and PS. Therefore, the liver micronucleus assay can be effectively integrated into repeated-dose studies in animals. Moreover, integration of multiple genotoxicity end points into one study can reduce the number of animals, boost the experimental efficiency, and provides a comprehensive evaluation of the genotoxic potential of chemicals.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":"36 6","pages":"401-406"},"PeriodicalIF":2.5000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/mutage/geab034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1
Abstract
The repeated-dose liver micronucleus (RDLMN) assay is a novel method for detecting genotoxic chemicals. Two carcinogens methyl carbamate (MC) and 1,3-propane sultone (PS) were evaluated for the liver micronucleus in a 14-day repeated-dose study with Crl: CD (SD) IGS rats. Additionally, micronucleated reticulocytes (MN-RET) in peripheral blood and DNA damage (alkaline comet assay) in the liver were also assessed in the same animals. Ten groups of five male Crl: CD (SD) IGS rats were treated once daily with MC (300, 600 or 1200 mg/kg/day), PS (37.5, 75 or 150 mg/kg/day), negative control or three positive controls by oral gavage for 15 days. Blood samples were collected at 3 h after the last administration for determining MN-RET frequencies (%MN-RET), and the livers were sampled for determining the frequency of micronuclei and DNA damage. MC was negative in the comet assay, liver micronucleus assay and reticulocyte micronucleus assay, while PS was positive in all three assays. These results are consistent with the previous genotoxic findings of MC and PS. Therefore, the liver micronucleus assay can be effectively integrated into repeated-dose studies in animals. Moreover, integration of multiple genotoxicity end points into one study can reduce the number of animals, boost the experimental efficiency, and provides a comprehensive evaluation of the genotoxic potential of chemicals.
期刊介绍:
Mutagenesis is an international multi-disciplinary journal designed to bring together research aimed at the identification, characterization and elucidation of the mechanisms of action of physical, chemical and biological agents capable of producing genetic change in living organisms and the study of the consequences of such changes.