SCISSOR™: a single-cell inferred site-specific omics resource for tumor microenvironment association study.

NAR Cancer Pub Date : 2021-09-09 eCollection Date: 2021-09-01 DOI:10.1093/narcan/zcab037
Xiang Cui, Fei Qin, Xuanxuan Yu, Feifei Xiao, Guoshuai Cai
{"title":"SCISSOR™: a single-cell inferred site-specific omics resource for tumor microenvironment association study.","authors":"Xiang Cui,&nbsp;Fei Qin,&nbsp;Xuanxuan Yu,&nbsp;Feifei Xiao,&nbsp;Guoshuai Cai","doi":"10.1093/narcan/zcab037","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor tissues are heterogeneous with different cell types in tumor microenvironment, which play an important role in tumorigenesis and tumor progression. Several computational algorithms and tools have been developed to infer the cell composition from bulk transcriptome profiles. However, they ignore the tissue specificity and thus a new resource for tissue-specific cell transcriptomic reference is needed for inferring cell composition in tumor microenvironment and exploring their association with clinical outcomes and tumor omics. In this study, we developed SCISSOR™ (https://thecailab.com/scissor/), an online open resource to fulfill that demand by integrating five orthogonal omics data of >6031 large-scale bulk samples, patient clinical outcomes and 451 917 high-granularity tissue-specific single-cell transcriptomic profiles of 16 cancer types. SCISSOR™ provides five major analysis modules that enable flexible modeling with adjustable parameters and dynamic visualization approaches. SCISSOR™ is valuable as a new resource for promoting tumor heterogeneity and tumor-tumor microenvironment cell interaction research, by delineating cells in the tissue-specific tumor microenvironment and characterizing their associations with tumor omics and clinical outcomes.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f9/5d/zcab037.PMC8428296.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcab037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tumor tissues are heterogeneous with different cell types in tumor microenvironment, which play an important role in tumorigenesis and tumor progression. Several computational algorithms and tools have been developed to infer the cell composition from bulk transcriptome profiles. However, they ignore the tissue specificity and thus a new resource for tissue-specific cell transcriptomic reference is needed for inferring cell composition in tumor microenvironment and exploring their association with clinical outcomes and tumor omics. In this study, we developed SCISSOR™ (https://thecailab.com/scissor/), an online open resource to fulfill that demand by integrating five orthogonal omics data of >6031 large-scale bulk samples, patient clinical outcomes and 451 917 high-granularity tissue-specific single-cell transcriptomic profiles of 16 cancer types. SCISSOR™ provides five major analysis modules that enable flexible modeling with adjustable parameters and dynamic visualization approaches. SCISSOR™ is valuable as a new resource for promoting tumor heterogeneity and tumor-tumor microenvironment cell interaction research, by delineating cells in the tissue-specific tumor microenvironment and characterizing their associations with tumor omics and clinical outcomes.

Abstract Image

Abstract Image

Abstract Image

SCISSOR™:用于肿瘤微环境关联研究的单细胞特异性位点组学资源。
肿瘤微环境中肿瘤组织具有异质性,细胞类型不同,在肿瘤发生和发展中起着重要作用。已经开发了几种计算算法和工具来从大量转录组谱中推断细胞组成。然而,它们忽略了组织特异性,因此需要一种新的组织特异性细胞转录组参考资源来推断肿瘤微环境中的细胞组成,并探索它们与临床结果和肿瘤组学的关联。在这项研究中,我们开发了在线开放资源SCISSOR™(https://thecailab.com/scissor/),通过整合5个正交组学数据,包括6031个大规模样本、患者临床结果和451 917个16种癌症类型的高粒度组织特异性单细胞转录组学图谱,来满足这一需求。SCISSOR™提供了五个主要的分析模块,使灵活的建模与可调参数和动态可视化方法。通过描绘组织特异性肿瘤微环境中的细胞并表征其与肿瘤组学和临床结果的关联,SCISSOR™作为促进肿瘤异质性和肿瘤-肿瘤微环境细胞相互作用研究的新资源是有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信