EM-based algorithms for single particle tracking of Ornstein-Uhlenbeck motion from sCMOS camera data.

Ye Lin, Sean B Andersson
{"title":"EM-based algorithms for single particle tracking of Ornstein-Uhlenbeck motion from sCMOS camera data.","authors":"Ye Lin,&nbsp;Sean B Andersson","doi":"10.23919/acc50511.2021.9483034","DOIUrl":null,"url":null,"abstract":"<p><p>Single particle tracking plays an important role in studying physical and kinetic properties of biomolecules. In this work, we introduce the application of Expectation Maximization (EM) based algorithms for solving localization and parameter estimation problems in SPT using data captured from scientific complementary metal-oxide semiconductor (sCMOS) camera sensors. Two representative methods are considered for generating the filtered and smoothed distributions needed by EM: Sequential Monte Carlo - EM, and Unscented - EM. The SMC method uses particle filtering and particle smoothing to handle general distributions, while the U scheme reduces the computational burden through the use of an unscented Kalman Filter and an unscented Rauch-Tung Striebel Smoother. We also investigate the influence of the number of images in the dataset on the final estimates through intensive simulations as well as the computational efficiency of the two methods.</p>","PeriodicalId":74510,"journal":{"name":"Proceedings of the ... American Control Conference. American Control Conference","volume":"2021 ","pages":"3945-3950"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411991/pdf/nihms-1711781.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... American Control Conference. American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc50511.2021.9483034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single particle tracking plays an important role in studying physical and kinetic properties of biomolecules. In this work, we introduce the application of Expectation Maximization (EM) based algorithms for solving localization and parameter estimation problems in SPT using data captured from scientific complementary metal-oxide semiconductor (sCMOS) camera sensors. Two representative methods are considered for generating the filtered and smoothed distributions needed by EM: Sequential Monte Carlo - EM, and Unscented - EM. The SMC method uses particle filtering and particle smoothing to handle general distributions, while the U scheme reduces the computational burden through the use of an unscented Kalman Filter and an unscented Rauch-Tung Striebel Smoother. We also investigate the influence of the number of images in the dataset on the final estimates through intensive simulations as well as the computational efficiency of the two methods.

基于em的基于sCMOS相机数据的Ornstein-Uhlenbeck运动单粒子跟踪算法。
单粒子跟踪在研究生物分子的物理和动力学特性方面起着重要的作用。在这项工作中,我们介绍了基于期望最大化(EM)算法的应用,该算法使用从科学互补金属氧化物半导体(sCMOS)相机传感器捕获的数据来解决SPT中的定位和参数估计问题。考虑了两种具有代表性的方法来生成EM所需的滤波和平滑分布:顺序蒙特卡罗- EM和Unscented - EM。SMC方法使用粒子滤波和粒子平滑来处理一般分布,而U方案通过使用Unscented卡尔曼滤波器和Unscented Rauch-Tung Striebel平滑来减少计算量。我们还通过密集的模拟研究了数据集中图像数量对最终估计的影响以及两种方法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信