Chen-Hua Ma, Jeffrey Yang, Jenna L Mueller, Huang-Chiao Huang
{"title":"Intratumoral Photosensitizer Delivery and Photodynamic Therapy.","authors":"Chen-Hua Ma, Jeffrey Yang, Jenna L Mueller, Huang-Chiao Huang","doi":"10.1142/s179398442130003x","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a two-step procedure that involves the administration of special drugs, commonly called photosensitizers, followed by the application of certain wavelengths of light. The light activates these photosensitizers to produce reactive molecular species that induce cell death in tissues. There are numerous factors to consider when selecting the appropriate photosensitizer administration route, such as which part of the body is being targeted, the pharmacokinetics of photosensitizers, and the formulation of photosensitizers. While intravenous, topical, and oral administration of photosensitizers are widely used in preclinical and clinical applications of PDT, other administration routes, such as intraperitoneal, intra-arterial, and intratumoral injections, are gaining traction for their potential in treating advanced diseases and reducing off-target toxicities. With recent advances in targeted nanotechnology, biomaterials, and light delivery systems, the exciting possibilities of targeted photosensitizer delivery can be fully realized for preclinical and clinical applications. Further, in light of the growing burden of cancer mortality in low and middle-income countries and development of low-cost light sources and photosensitizers, PDT could be used to treat cancer patients in low-income settings. This short article introduces aspects of interfaces of intratumoral photosensitizer injections and nano-biomaterials for PDT applications in both high-income and low-income settings but does not present a comprehensive review due to space limitations.</p>","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":"11 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8412167/pdf/nihms-1724482.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s179398442130003x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4
Abstract
Photodynamic therapy (PDT) is a two-step procedure that involves the administration of special drugs, commonly called photosensitizers, followed by the application of certain wavelengths of light. The light activates these photosensitizers to produce reactive molecular species that induce cell death in tissues. There are numerous factors to consider when selecting the appropriate photosensitizer administration route, such as which part of the body is being targeted, the pharmacokinetics of photosensitizers, and the formulation of photosensitizers. While intravenous, topical, and oral administration of photosensitizers are widely used in preclinical and clinical applications of PDT, other administration routes, such as intraperitoneal, intra-arterial, and intratumoral injections, are gaining traction for their potential in treating advanced diseases and reducing off-target toxicities. With recent advances in targeted nanotechnology, biomaterials, and light delivery systems, the exciting possibilities of targeted photosensitizer delivery can be fully realized for preclinical and clinical applications. Further, in light of the growing burden of cancer mortality in low and middle-income countries and development of low-cost light sources and photosensitizers, PDT could be used to treat cancer patients in low-income settings. This short article introduces aspects of interfaces of intratumoral photosensitizer injections and nano-biomaterials for PDT applications in both high-income and low-income settings but does not present a comprehensive review due to space limitations.