The r-X1 deletion induces terminal deficiencies in the maize B chromosome.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2021-12-01 Epub Date: 2021-09-03 DOI:10.1007/s10577-021-09671-4
Yen-Hua Huang, Tzu-Che Lin, Wan-Yi Chiou, Ya-Ming Cheng
{"title":"The r-X1 deletion induces terminal deficiencies in the maize B chromosome.","authors":"Yen-Hua Huang,&nbsp;Tzu-Che Lin,&nbsp;Wan-Yi Chiou,&nbsp;Ya-Ming Cheng","doi":"10.1007/s10577-021-09671-4","DOIUrl":null,"url":null,"abstract":"<p><p>In addition to causing the nondisjunction of maize B and normal A chromosomes at the second megaspore division during embryo sac development, the r-X1 deletion results in terminal deficiencies (TDs) in various A chromosomal arms, but whether the r-X1 deletion also induces TDs of the maize B chromosome remains unknown. To answer this question, the chromosomal composition in the r-X1-containing progeny of r-X1/R-r female parents carrying two standard B chromosomes was determined. Nine of 104 (8.7%) examined kernels contained a smaller telocentric B chromosome, and one of these (designated Bdef-1) was further identified as a TD with a breakpoint in the third distal heterochromatic region of the B chromosome. Thus, the results indicated that the r-X1 deletion could also induce TDs of the maize B chromosome during megaspore divisions. The Bdef-1 chromosome lacked nondisjunctional behavior, and this behavior was restored by the presence of the B chromosome in the cell. A transmission analysis of the Bdef-1 chromosome revealed that loss of the distal portion of the B chromosome reduced female but not male transmission of the B chromosome. Furthermore, the Bdef-1 chromosome was used to more finely map B-derived miRNA genes on the B chromosome. Our results indicate that the r-X1 deletion results in TDs of the B chromosome in maize, and the r-X1 deletion system can thus be used to generate a series of terminally truncated B chromosomes that may be used to map features of the B chromosome, including genes and properties related to B chromosome functions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"351-360"},"PeriodicalIF":4.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-021-09671-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In addition to causing the nondisjunction of maize B and normal A chromosomes at the second megaspore division during embryo sac development, the r-X1 deletion results in terminal deficiencies (TDs) in various A chromosomal arms, but whether the r-X1 deletion also induces TDs of the maize B chromosome remains unknown. To answer this question, the chromosomal composition in the r-X1-containing progeny of r-X1/R-r female parents carrying two standard B chromosomes was determined. Nine of 104 (8.7%) examined kernels contained a smaller telocentric B chromosome, and one of these (designated Bdef-1) was further identified as a TD with a breakpoint in the third distal heterochromatic region of the B chromosome. Thus, the results indicated that the r-X1 deletion could also induce TDs of the maize B chromosome during megaspore divisions. The Bdef-1 chromosome lacked nondisjunctional behavior, and this behavior was restored by the presence of the B chromosome in the cell. A transmission analysis of the Bdef-1 chromosome revealed that loss of the distal portion of the B chromosome reduced female but not male transmission of the B chromosome. Furthermore, the Bdef-1 chromosome was used to more finely map B-derived miRNA genes on the B chromosome. Our results indicate that the r-X1 deletion results in TDs of the B chromosome in maize, and the r-X1 deletion system can thus be used to generate a series of terminally truncated B chromosomes that may be used to map features of the B chromosome, including genes and properties related to B chromosome functions.

r-X1缺失导致玉米B染色体末端缺陷。
在胚囊发育过程中,r-X1缺失除了导致玉米B染色体和正常A染色体在第二次大孢子分裂时不分离外,还会导致各种A染色体臂的末端缺陷(TDs),但r-X1缺失是否也会导致玉米B染色体的TDs尚不清楚。为了回答这个问题,我们测定了携带两条标准B染色体的r-X1/R-r母本含有r-X1的后代的染色体组成。104粒中有9粒(8.7%)含有较小的远心B染色体,其中一个(指定为Bdef-1)被进一步鉴定为TD,其断点位于B染色体的第三远端异色区。由此可见,r-X1缺失也可能在大孢子分裂过程中诱发玉米B染色体的TDs。Bdef-1染色体缺乏非分离行为,这种行为通过细胞中B染色体的存在而恢复。对Bdef-1染色体的遗传分析表明,B染色体远端部分的缺失减少了B染色体的雌性遗传,但没有减少雄性遗传。此外,Bdef-1染色体被用于更精细地绘制B染色体上B源性miRNA基因。我们的研究结果表明,r-X1缺失导致了玉米B染色体的TDs,因此r-X1缺失系统可以产生一系列末端截断的B染色体,这些染色体可以用来绘制B染色体的特征,包括与B染色体功能相关的基因和特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信