Qi Ye, Bingo Wing-Kuen Ling, Nuo Xu, Yuxin Lin, Lingyue Hu
{"title":"Multi-model fusion of classifiers for blood pressure estimation","authors":"Qi Ye, Bingo Wing-Kuen Ling, Nuo Xu, Yuxin Lin, Lingyue Hu","doi":"10.1049/syb2.12033","DOIUrl":null,"url":null,"abstract":"<p>Prehypertension is a new risky disease defined in the seventh report issued by the Joint National Commission. Hence, detecting prehypertension in time plays a very important role in protecting human lives. This study proposes a method for categorising blood pressure values into two classes, namely the class of healthy blood pressure values and the class of prehypertension blood pressure values, as well as estimating the blood pressure values continuously only by employing photoplethysmograms. First, the denoising of photoplethysmograms is performed via a discrete cosine transform approach. Then, the features of the photoplethysmograms in both the time domain and the frequency domain are extracted. Next, the feature vectors are categorised into the two classes of blood pressure values by a multi-model fusion of the classifiers. Here, the support vector machine, the random forest and the <i>K</i>-nearest neighbour classifier are employed for performing the fusion. There are two types of blood pressure values. They are the systolic blood pressure values and the diastolic blood pressure values. For each class and each type of blood pressure values, support vector regression is used to estimate the blood pressure values. Since different classes and different types of blood pressure values are considered separately, the proposed method achieves an accurate estimation. The computed numerical simulation results show that the proposed method based on the multi-model fusion of the classifiers achieves both higher classification accuracy and higher regression accuracy than the individual classification methods.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8c/00/SYB2-15-184.PMC8675793.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Prehypertension is a new risky disease defined in the seventh report issued by the Joint National Commission. Hence, detecting prehypertension in time plays a very important role in protecting human lives. This study proposes a method for categorising blood pressure values into two classes, namely the class of healthy blood pressure values and the class of prehypertension blood pressure values, as well as estimating the blood pressure values continuously only by employing photoplethysmograms. First, the denoising of photoplethysmograms is performed via a discrete cosine transform approach. Then, the features of the photoplethysmograms in both the time domain and the frequency domain are extracted. Next, the feature vectors are categorised into the two classes of blood pressure values by a multi-model fusion of the classifiers. Here, the support vector machine, the random forest and the K-nearest neighbour classifier are employed for performing the fusion. There are two types of blood pressure values. They are the systolic blood pressure values and the diastolic blood pressure values. For each class and each type of blood pressure values, support vector regression is used to estimate the blood pressure values. Since different classes and different types of blood pressure values are considered separately, the proposed method achieves an accurate estimation. The computed numerical simulation results show that the proposed method based on the multi-model fusion of the classifiers achieves both higher classification accuracy and higher regression accuracy than the individual classification methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.