{"title":"Climate Change and Shell-Boring Polychaetes (Annelida: Spionidae): Current State of Knowledge and the Need for More Experimental Research.","authors":"Andrew A David","doi":"10.1086/714989","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractAnthropogenic climate change is considered to be one of the greatest threats facing marine biodiversity. The vast majority of experimental work investigating the effects of climate change stressors on marine organisms has focused on calcifying organisms, such as corals and molluscs, where cross-generational phenotypic changes can be easily quantified. Bivalves in particular have been the subject of numerous climate change studies, in part because of their economic value in the aquaculture industry and their important roles as ecosystem engineers. However, there has been little to no work investigating the effects of these stressors on the symbionts associated with these bivalves, specifically, their shell-boring polychaete parasites. This is important to understand because climate change may shift the synergistic relationship between parasite and host based on the individual responses of each. If such a shift favors proliferation of the polychaete, it may very well facilitate extinction of host bivalve populations. In this review I will (i) provide an overview of research completed thus far on the effects of climate change stressors on shell-boring polychaetes, (ii) discuss the technical challenges of studying these parasites in the laboratory, and (iii) propose a standardized framework for carrying out future <i>in vitro</i> and <i>in vivo</i> climate change experiments on shell-boring polychaetes.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"241 1","pages":"4-15"},"PeriodicalIF":2.1000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1086/714989","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/714989","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
AbstractAnthropogenic climate change is considered to be one of the greatest threats facing marine biodiversity. The vast majority of experimental work investigating the effects of climate change stressors on marine organisms has focused on calcifying organisms, such as corals and molluscs, where cross-generational phenotypic changes can be easily quantified. Bivalves in particular have been the subject of numerous climate change studies, in part because of their economic value in the aquaculture industry and their important roles as ecosystem engineers. However, there has been little to no work investigating the effects of these stressors on the symbionts associated with these bivalves, specifically, their shell-boring polychaete parasites. This is important to understand because climate change may shift the synergistic relationship between parasite and host based on the individual responses of each. If such a shift favors proliferation of the polychaete, it may very well facilitate extinction of host bivalve populations. In this review I will (i) provide an overview of research completed thus far on the effects of climate change stressors on shell-boring polychaetes, (ii) discuss the technical challenges of studying these parasites in the laboratory, and (iii) propose a standardized framework for carrying out future in vitro and in vivo climate change experiments on shell-boring polychaetes.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.