Transformer-Based Named Entity Recognition for Parsing Clinical Trial Eligibility Criteria.

Shubo Tian, Arslan Erdengasileng, Xi Yang, Yi Guo, Yonghui Wu, Jinfeng Zhang, Jiang Bian, Zhe He
{"title":"Transformer-Based Named Entity Recognition for Parsing Clinical Trial Eligibility Criteria.","authors":"Shubo Tian,&nbsp;Arslan Erdengasileng,&nbsp;Xi Yang,&nbsp;Yi Guo,&nbsp;Yonghui Wu,&nbsp;Jinfeng Zhang,&nbsp;Jiang Bian,&nbsp;Zhe He","doi":"10.1145/3459930.3469560","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid adoption of electronic health records (EHRs) systems has made clinical data available in electronic format for research and for many downstream applications. Electronic screening of potentially eligible patients using these clinical databases for clinical trials is a critical need to improve trial recruitment efficiency. Nevertheless, manually translating free-text eligibility criteria into database queries is labor intensive and inefficient. To facilitate automated screening, free-text eligibility criteria must be structured and coded into a computable format using controlled vocabularies. Named entity recognition (NER) is thus an important first step. In this study, we evaluate 4 state-of-the-art transformer-based NER models on two publicly available annotated corpora of eligibility criteria released by Columbia University (i.e., the Chia data) and Facebook Research (i.e.the FRD data). Four transformer-based models (i.e., BERT, ALBERT, RoBERTa, and ELECTRA) pretrained with general English domain corpora vs. those pretrained with PubMed citations, clinical notes from the MIMIC-III dataset and eligibility criteria extracted from all the clinical trials on ClinicalTrials.gov were compared. Experimental results show that RoBERTa pretrained with MIMIC-III clinical notes and eligibility criteria yielded the highest strict and relaxed F-scores in both the Chia data (i.e., 0.658/0.798) and the FRD data (i.e., 0.785/0.916). With promising NER results, further investigations on building a reliable natural language processing (NLP)-assisted pipeline for automated electronic screening are needed.</p>","PeriodicalId":72044,"journal":{"name":"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine","volume":"2021 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3459930.3469560","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-BCB ... ... : the ... ACM Conference on Bioinformatics, Computational Biology and Biomedicine. ACM Conference on Bioinformatics, Computational Biology and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459930.3469560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The rapid adoption of electronic health records (EHRs) systems has made clinical data available in electronic format for research and for many downstream applications. Electronic screening of potentially eligible patients using these clinical databases for clinical trials is a critical need to improve trial recruitment efficiency. Nevertheless, manually translating free-text eligibility criteria into database queries is labor intensive and inefficient. To facilitate automated screening, free-text eligibility criteria must be structured and coded into a computable format using controlled vocabularies. Named entity recognition (NER) is thus an important first step. In this study, we evaluate 4 state-of-the-art transformer-based NER models on two publicly available annotated corpora of eligibility criteria released by Columbia University (i.e., the Chia data) and Facebook Research (i.e.the FRD data). Four transformer-based models (i.e., BERT, ALBERT, RoBERTa, and ELECTRA) pretrained with general English domain corpora vs. those pretrained with PubMed citations, clinical notes from the MIMIC-III dataset and eligibility criteria extracted from all the clinical trials on ClinicalTrials.gov were compared. Experimental results show that RoBERTa pretrained with MIMIC-III clinical notes and eligibility criteria yielded the highest strict and relaxed F-scores in both the Chia data (i.e., 0.658/0.798) and the FRD data (i.e., 0.785/0.916). With promising NER results, further investigations on building a reliable natural language processing (NLP)-assisted pipeline for automated electronic screening are needed.

Abstract Image

基于变压器的命名实体识别分析临床试验资格标准。
电子健康记录(EHRs)系统的迅速采用使得临床数据以电子格式可用于研究和许多下游应用。使用这些临床数据库进行临床试验的潜在合格患者的电子筛选是提高试验招募效率的关键需要。然而,手动将自由文本资格标准转换为数据库查询是劳动密集型且效率低下的。为了方便自动筛选,必须使用受控词汇表将自由文本资格标准结构化并编码为可计算的格式。命名实体识别(NER)因此是重要的第一步。在本研究中,我们在哥伦比亚大学(即中国数据)和Facebook Research(即FRD数据)发布的两个公开可用的资格标准注释语料库上评估了4个最先进的基于变压器的NER模型。四种基于转换器的模型(即BERT、ALBERT、RoBERTa和ELECTRA)使用通用英语领域语料库进行预训练,与使用PubMed引文、MIMIC-III数据集的临床记录和从ClinicalTrials.gov上提取的所有临床试验的资格标准进行预训练的模型进行比较。实验结果表明,使用MIMIC-III临床记录和资格标准进行预训练的RoBERTa在Chia数据(0.658/0.798)和FRD数据(0.785/0.916)中均获得了最高的严格f分和宽松f分。随着NER结果的出现,需要进一步研究建立一个可靠的自然语言处理(NLP)辅助的自动化电子筛选管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信