{"title":"Syntax-based transfer learning for the task of biomedical relation extraction.","authors":"Joël Legrand, Yannick Toussaint, Chedy Raïssi, Adrien Coulet","doi":"10.1186/s13326-021-00248-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transfer learning aims at enhancing machine learning performance on a problem by reusing labeled data originally designed for a related, but distinct problem. In particular, domain adaptation consists for a specific task, in reusing training data developedfor the same task but a distinct domain. This is particularly relevant to the applications of deep learning in Natural Language Processing, because they usually require large annotated corpora that may not exist for the targeted domain, but exist for side domains.</p><p><strong>Results: </strong>In this paper, we experiment with transfer learning for the task of relation extraction from biomedical texts, using the TreeLSTM model. We empirically show the impact of TreeLSTM alone and with domain adaptation by obtaining better performances than the state of the art on two biomedical relation extraction tasks and equal performances for two others, for which little annotated data are available. Furthermore, we propose an analysis of the role that syntactic features may play in transfer learning for relation extraction.</p><p><strong>Conclusion: </strong>Given the difficulty to manually annotate corpora in the biomedical domain, the proposed transfer learning method offers a promising alternative to achieve good relation extraction performances for domains associated with scarce resources. Also, our analysis illustrates the importance that syntax plays in transfer learning, underlying the importance in this domain to privilege approaches that embed syntactic features.</p>","PeriodicalId":15055,"journal":{"name":"Journal of Biomedical Semantics","volume":" ","pages":"16"},"PeriodicalIF":2.0000,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Semantics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13326-021-00248-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Transfer learning aims at enhancing machine learning performance on a problem by reusing labeled data originally designed for a related, but distinct problem. In particular, domain adaptation consists for a specific task, in reusing training data developedfor the same task but a distinct domain. This is particularly relevant to the applications of deep learning in Natural Language Processing, because they usually require large annotated corpora that may not exist for the targeted domain, but exist for side domains.
Results: In this paper, we experiment with transfer learning for the task of relation extraction from biomedical texts, using the TreeLSTM model. We empirically show the impact of TreeLSTM alone and with domain adaptation by obtaining better performances than the state of the art on two biomedical relation extraction tasks and equal performances for two others, for which little annotated data are available. Furthermore, we propose an analysis of the role that syntactic features may play in transfer learning for relation extraction.
Conclusion: Given the difficulty to manually annotate corpora in the biomedical domain, the proposed transfer learning method offers a promising alternative to achieve good relation extraction performances for domains associated with scarce resources. Also, our analysis illustrates the importance that syntax plays in transfer learning, underlying the importance in this domain to privilege approaches that embed syntactic features.
期刊介绍:
Journal of Biomedical Semantics addresses issues of semantic enrichment and semantic processing in the biomedical domain. The scope of the journal covers two main areas:
Infrastructure for biomedical semantics: focusing on semantic resources and repositories, meta-data management and resource description, knowledge representation and semantic frameworks, the Biomedical Semantic Web, and semantic interoperability.
Semantic mining, annotation, and analysis: focusing on approaches and applications of semantic resources; and tools for investigation, reasoning, prediction, and discoveries in biomedicine.