{"title":"Analysis of shape data: From landmarks to elastic curves.","authors":"Karthik Bharath, Sebastian Kurtek","doi":"10.1002/wics.1495","DOIUrl":null,"url":null,"abstract":"<p><p>Proliferation of high-resolution imaging data in recent years has led to sub-stantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two-dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark-based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape-preserving transformation of a curve. The transition to the curve-based approach moves the mathematical setting of shape analysis from finite-dimensional non-Euclidean spaces to infinite-dimensional ones. We discuss some of the challenges associated with the infinite-dimensionality of the shape space, and illustrate the use of geometry-based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state-of-the-art in the field.</p>","PeriodicalId":47779,"journal":{"name":"Wiley Interdisciplinary Reviews-Computational Statistics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357314/pdf/nihms-1704274.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/wics.1495","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Proliferation of high-resolution imaging data in recent years has led to sub-stantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two-dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark-based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape-preserving transformation of a curve. The transition to the curve-based approach moves the mathematical setting of shape analysis from finite-dimensional non-Euclidean spaces to infinite-dimensional ones. We discuss some of the challenges associated with the infinite-dimensionality of the shape space, and illustrate the use of geometry-based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state-of-the-art in the field.