Enis Afgan, Vahid Jalili, Nuwan Goonasekera, James Taylor, Jeremy Goecks
{"title":"Federated Galaxy: Biomedical Computing at the Frontier.","authors":"Enis Afgan, Vahid Jalili, Nuwan Goonasekera, James Taylor, Jeremy Goecks","doi":"10.1109/cloud.2018.00124","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedical data exploration requires integrative analyses of large datasets using a diverse ecosystem of tools. For more than a decade, the Galaxy project (https://galaxyproject.org) has provided researchers with a web-based, user-friendly, scalable data analysis framework complemented by a rich ecosystem of tools (https://usegalaxy.org/toolshed) used to perform genomic, proteomic, metabolomic, and imaging experiments. Galaxy can be deployed on the cloud (https://launch.usegalaxy.org), institutional computing clusters, and personal computers, or readily used on a number of public servers (e.g., https://usegalaxy.org). In this paper, we present our plan and progress towards creating Galaxy-as-a-Service-a federation of distributed data and computing resources into a panoptic analysis platform. Users can leverage a pool of public and institutional resources, in addition to plugging-in their private resources, helping answer the challenge of resource divergence across various Galaxy instances and enabling seamless analysis of biomedical data.</p>","PeriodicalId":93366,"journal":{"name":"Proceedings. IEEE International Conference on Cloud Computing","volume":"2018 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356149/pdf/nihms-1689939.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cloud.2018.00124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/9/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Biomedical data exploration requires integrative analyses of large datasets using a diverse ecosystem of tools. For more than a decade, the Galaxy project (https://galaxyproject.org) has provided researchers with a web-based, user-friendly, scalable data analysis framework complemented by a rich ecosystem of tools (https://usegalaxy.org/toolshed) used to perform genomic, proteomic, metabolomic, and imaging experiments. Galaxy can be deployed on the cloud (https://launch.usegalaxy.org), institutional computing clusters, and personal computers, or readily used on a number of public servers (e.g., https://usegalaxy.org). In this paper, we present our plan and progress towards creating Galaxy-as-a-Service-a federation of distributed data and computing resources into a panoptic analysis platform. Users can leverage a pool of public and institutional resources, in addition to plugging-in their private resources, helping answer the challenge of resource divergence across various Galaxy instances and enabling seamless analysis of biomedical data.