Halida Thanveer Asana Marican, Lucas W H Sun, Hongyuan Shen
{"title":"A Simple Method to Establish Metaphase Chromosomes from Individual Zebrafish Embryos.","authors":"Halida Thanveer Asana Marican, Lucas W H Sun, Hongyuan Shen","doi":"10.1089/zeb.2021.0014","DOIUrl":null,"url":null,"abstract":"Cytogenetic approach based on metaphase chromosomes established from dividing cells enables direct microscopic visualization of individual chromosomes, a powerful technique to investigate aneuploidy, chromosome aberrations, and genomic instability. In this study, we describe a simple method based on direct blocking of metaphases in individual zebrafish embryo and dropping slides with temperature changes, water vapor, and acetic acid treatment to increase the metaphase diameters. We demonstrate that well-separated metaphases could be established from single zebrafish embryos using this method. Our method could be further adapted for the analyses of DNA damage, chromosome aberrations, and genomic instability using zebrafish and other teleost models.","PeriodicalId":23872,"journal":{"name":"Zebrafish","volume":"18 5","pages":"338-341"},"PeriodicalIF":1.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zebrafish","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2021.0014","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Cytogenetic approach based on metaphase chromosomes established from dividing cells enables direct microscopic visualization of individual chromosomes, a powerful technique to investigate aneuploidy, chromosome aberrations, and genomic instability. In this study, we describe a simple method based on direct blocking of metaphases in individual zebrafish embryo and dropping slides with temperature changes, water vapor, and acetic acid treatment to increase the metaphase diameters. We demonstrate that well-separated metaphases could be established from single zebrafish embryos using this method. Our method could be further adapted for the analyses of DNA damage, chromosome aberrations, and genomic instability using zebrafish and other teleost models.
期刊介绍:
Zebrafish is the only peer-reviewed journal dedicated to the central role of zebrafish and other aquarium species as models for the study of vertebrate development, evolution, toxicology, and human disease.
Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is a prime model for genetic and developmental studies. While genetically more distant from humans, the vertebrate zebrafish nevertheless has comparable organs and tissues, such as heart, kidney, pancreas, bones, and cartilage.
Zebrafish introduced the new section TechnoFish, which highlights these innovations for the general zebrafish community.
TechnoFish features two types of articles:
TechnoFish Previews: Important, generally useful technical advances or valuable transgenic lines
TechnoFish Methods: Brief descriptions of new methods, reagents, or transgenic lines that will be of widespread use in the zebrafish community
Zebrafish coverage includes:
Comparative genomics and evolution
Molecular/cellular mechanisms of cell growth
Genetic analysis of embryogenesis and disease
Toxicological and infectious disease models
Models for neurological disorders and aging
New methods, tools, and experimental approaches
Zebrafish also includes research with other aquarium species such as medaka, Fugu, and Xiphophorus.