Shahin Ahmadi, Zohreh Moradi, Ashwani Kumar, Ali Almasirad
{"title":"SMILES-based QSAR and molecular docking study of xanthone derivatives as α-glucosidase inhibitors.","authors":"Shahin Ahmadi, Zohreh Moradi, Ashwani Kumar, Ali Almasirad","doi":"10.1080/10799893.2021.1957932","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing diabetic population is one of the major health concerns all over the world. Inhibition of α-glucosidase is a clinically proved and attractive strategy to manage diabetes. In this study, robust and reliable QSAR models to predict α-glucosidase inhibitory potential of xanthone derivatives are developed by the Monte Carlo technique. The chemical structures are represented by SMILES notation without any 3D-optimization. The significance of the index of ideality correlation (IIC) with applicability domain (AD) is also studied in depth. The models developed using CORAL software by considering IIC criteria are found to be statistically more significant and robust than simple balance of correlation. The QSAR models are validated by both internal and external validation methods. The promoters of increase and decrease of activity are also extracted and interpreted in detail. The interpretation of developed models explains the role of different structural attributes in predicting the pIC<sub>50</sub> of xanthone derivatives as α-glucosidase inhibitors. Based on the results of model interpretation, modifications are done on some xanthone derivatives and 15 new molecules are designed. The α-glucosidase inhibitory activity of novel molecules is further supported by docking studies.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"42 4","pages":"361-372"},"PeriodicalIF":2.6000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2021.1957932","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/8/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 8
Abstract
Increasing diabetic population is one of the major health concerns all over the world. Inhibition of α-glucosidase is a clinically proved and attractive strategy to manage diabetes. In this study, robust and reliable QSAR models to predict α-glucosidase inhibitory potential of xanthone derivatives are developed by the Monte Carlo technique. The chemical structures are represented by SMILES notation without any 3D-optimization. The significance of the index of ideality correlation (IIC) with applicability domain (AD) is also studied in depth. The models developed using CORAL software by considering IIC criteria are found to be statistically more significant and robust than simple balance of correlation. The QSAR models are validated by both internal and external validation methods. The promoters of increase and decrease of activity are also extracted and interpreted in detail. The interpretation of developed models explains the role of different structural attributes in predicting the pIC50 of xanthone derivatives as α-glucosidase inhibitors. Based on the results of model interpretation, modifications are done on some xanthone derivatives and 15 new molecules are designed. The α-glucosidase inhibitory activity of novel molecules is further supported by docking studies.
期刊介绍:
Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services:
BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.