Rebecca A Hubbard, Elle Lett, Gloria Y F Ho, Jessica Chubak
{"title":"Characterizing Bias Due to Differential Exposure Ascertainment in Electronic Health Record Data.","authors":"Rebecca A Hubbard, Elle Lett, Gloria Y F Ho, Jessica Chubak","doi":"10.1007/s10742-020-00235-3","DOIUrl":null,"url":null,"abstract":"<p><p>Data derived from electronic health records (EHR) are heterogeneous with availability of specific measures dependent on the type and timing of patients' healthcare interactions. This creates a challenge for research using EHR-derived exposures because gold-standard exposure data, determined by a definitive assessment, may only be available for a subset of the population. Alternative approaches to exposure ascertainment in this case include restricting the analytic sample to only those patients with gold-standard exposure data available (exclusion); using gold-standard data, when available, and using a proxy exposure measure when the gold standard is unavailable (best available); or using a proxy exposure measure for everyone (common data). Exclusion may induce selection bias in outcome/exposure association estimates, while incorporating information from a proxy exposure via either the best available or common data approaches may result in information bias due to measurement error. The objective of this paper was to explore the bias and efficiency of these three analytic approaches across a broad range of scenarios motivated by a study of the association between chronic hyperglycemia and five-year mortality in an EHR-derived cohort of colon cancer survivors. We found that the best available approach tended to mitigate inefficiency and selection bias resulting from exclusion while suffering from less information bias than the common data approach. However, bias in all three approaches can be severe, particularly when both selection bias and information bias are present. When risk of either of these biases is judged to be more than moderate, EHR-based analyses may lead to erroneous conclusions.</p>","PeriodicalId":45600,"journal":{"name":"Health Services and Outcomes Research Methodology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10742-020-00235-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Services and Outcomes Research Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10742-020-00235-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Data derived from electronic health records (EHR) are heterogeneous with availability of specific measures dependent on the type and timing of patients' healthcare interactions. This creates a challenge for research using EHR-derived exposures because gold-standard exposure data, determined by a definitive assessment, may only be available for a subset of the population. Alternative approaches to exposure ascertainment in this case include restricting the analytic sample to only those patients with gold-standard exposure data available (exclusion); using gold-standard data, when available, and using a proxy exposure measure when the gold standard is unavailable (best available); or using a proxy exposure measure for everyone (common data). Exclusion may induce selection bias in outcome/exposure association estimates, while incorporating information from a proxy exposure via either the best available or common data approaches may result in information bias due to measurement error. The objective of this paper was to explore the bias and efficiency of these three analytic approaches across a broad range of scenarios motivated by a study of the association between chronic hyperglycemia and five-year mortality in an EHR-derived cohort of colon cancer survivors. We found that the best available approach tended to mitigate inefficiency and selection bias resulting from exclusion while suffering from less information bias than the common data approach. However, bias in all three approaches can be severe, particularly when both selection bias and information bias are present. When risk of either of these biases is judged to be more than moderate, EHR-based analyses may lead to erroneous conclusions.
期刊介绍:
The journal reflects the multidisciplinary nature of the field of health services and outcomes research. It addresses the needs of multiple, interlocking communities, including methodologists in statistics, econometrics, social and behavioral sciences; designers and analysts of health policy and health services research projects; and health care providers and policy makers who need to properly understand and evaluate the results of published research. The journal strives to enhance the level of methodologic rigor in health services and outcomes research and contributes to the development of methodologic standards in the field. In pursuing its main objective, the journal also provides a meeting ground for researchers from a number of traditional disciplines and fosters the development of new quantitative, qualitative, and mixed methods by statisticians, econometricians, health services researchers, and methodologists in other fields. Health Services and Outcomes Research Methodology publishes: Research papers on quantitative, qualitative, and mixed methods; Case Studies describing applications of quantitative and qualitative methodology in health services and outcomes research; Review Articles synthesizing and popularizing methodologic developments; Tutorials; Articles on computational issues and software reviews; Book reviews; and Notices. Special issues will be devoted to papers presented at important workshops and conferences.