{"title":"Insertion of a Loop Structure into the \"Loopless\" GH19 Chitinase from <i>Bryum coronatum</i>.","authors":"Shoko Takenaka, Takayuki Ohnuma, Tamo Fukamizo","doi":"10.5458/jag.jag.JAG-2016_015","DOIUrl":null,"url":null,"abstract":"<p><p>Chitinases belonging to the GH19 family have diverse loop structure arrangements. A GH19 chitinase from rye seeds (RSC-c) has a full set of (six) loop structures that form an extended binding cleft from -4 to +4 (\"loopful\"), while that from moss (BcChi-A) lacks several loops and forms a shortened binding cleft from -2 to +2 (\"loopless\"). We herein inserted a loop involved in sugar residue binding at subsites +3 and +4 of RSC-c (Loop-II) into BcChi-A (BcChi-A+L-II), and the thermal stability and enzymatic activity of BcChi-A+L-II were then characterized and compared with those of BcChi-A. The transition temperature of thermal unfolding decreased from 77.2 ˚C (BcChi-A) to 63.3 ˚C (BcChi-A+L-II) by insertion of Loop-II. Enzymatic activities toward the chitin tetramer (GlcNAc)<sub>4</sub> and the polymeric substrate glycol chitin were also suppressed by the Loop-II insertion to 12 and 9 %, respectively. The Loop-II inserted into BcChi-A was found to be markedly flexible and disadvantageous for protein stability and enzymatic activity.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"64 2","pages":"39-42"},"PeriodicalIF":1.2000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2016_015","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2016_015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Chitinases belonging to the GH19 family have diverse loop structure arrangements. A GH19 chitinase from rye seeds (RSC-c) has a full set of (six) loop structures that form an extended binding cleft from -4 to +4 ("loopful"), while that from moss (BcChi-A) lacks several loops and forms a shortened binding cleft from -2 to +2 ("loopless"). We herein inserted a loop involved in sugar residue binding at subsites +3 and +4 of RSC-c (Loop-II) into BcChi-A (BcChi-A+L-II), and the thermal stability and enzymatic activity of BcChi-A+L-II were then characterized and compared with those of BcChi-A. The transition temperature of thermal unfolding decreased from 77.2 ˚C (BcChi-A) to 63.3 ˚C (BcChi-A+L-II) by insertion of Loop-II. Enzymatic activities toward the chitin tetramer (GlcNAc)4 and the polymeric substrate glycol chitin were also suppressed by the Loop-II insertion to 12 and 9 %, respectively. The Loop-II inserted into BcChi-A was found to be markedly flexible and disadvantageous for protein stability and enzymatic activity.