{"title":"Epimerization and Decomposition of Kojibiose and Sophorose by Heat Treatment under Neutral pH Conditions.","authors":"Kazuhiro Chiku, Mami Wada, Haruka Atsuji, Arisa Hosonuma, Mitsuru Yoshida, Hiroshi Ono, Motomitsu Kitaoka","doi":"10.5458/jag.jag.JAG-2018_0002","DOIUrl":null,"url":null,"abstract":"<p><p>We evaluated the stabilities of kojibiose and sophorose when heated under neutral pH conditions. Kojibiose and sophorose epimerized at the C-2 position of glucose on the reducing end, resulting in the production of 2-<i>O</i>-α-D-glucopyranosyl-D-mannose and 2-<i>O</i>-β-D-glucopyranosyl-D-mannose, respectively. Under weak alkaline conditions, kojibiose was decomposed due to heating into its mono-dehydrated derivatives, including 3-deoxy-2,3-unsaturated compounds and bicyclic 3,6-anhydro compounds. Following these experiments, we propose a kinetic model for the epimerization and decomposition of kojibiose and sophorose by heat treatment under neutral pH and alkaline conditions. The proposed model shows a good fit with the experimental data collected in this study. The rate constants of a reversible epimerization of kojibiose at pH 7.5 and 90 °C were (1.6 ± 0.1) × 10<sup>-5</sup> s<sup>-1</sup> and (3.2 ± 0.2) × 10<sup>-5</sup> s<sup>-1</sup> for the forward and reverse reactions, respectively, and were almost identical to those [(1.5 ± 0.1) × 10<sup>-5</sup> s<sup>-1</sup> and (3.5 ± 0.4) × 10<sup>-5</sup> s<sup>-1</sup>] of sophorose. The rate constant of the decomposition reaction for kojibiose was (4.7 ± 1.1) × 10<sup>-7</sup> s<sup>-1</sup> whereas that for sophorose [(3.7 ± 0.2) × 10<sup>-6</sup> s<sup>-1</sup>] was about ten times higher. The epimerization reaction was not significantly affected by the variation in the buffer except for a borate buffer, and depended instead upon the pH value (concentration of hydroxide ions), indicating that epimerization occurred as a function of the hydroxide ion. These instabilities are an extension of the neutral pH conditions for keto-enol tautomerization that are often observed under strong alkaline conditions.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"66 1","pages":"1-9"},"PeriodicalIF":1.2000,"publicationDate":"2019-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c5/13/JAG-66-001.PMC8056910.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2018_0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We evaluated the stabilities of kojibiose and sophorose when heated under neutral pH conditions. Kojibiose and sophorose epimerized at the C-2 position of glucose on the reducing end, resulting in the production of 2-O-α-D-glucopyranosyl-D-mannose and 2-O-β-D-glucopyranosyl-D-mannose, respectively. Under weak alkaline conditions, kojibiose was decomposed due to heating into its mono-dehydrated derivatives, including 3-deoxy-2,3-unsaturated compounds and bicyclic 3,6-anhydro compounds. Following these experiments, we propose a kinetic model for the epimerization and decomposition of kojibiose and sophorose by heat treatment under neutral pH and alkaline conditions. The proposed model shows a good fit with the experimental data collected in this study. The rate constants of a reversible epimerization of kojibiose at pH 7.5 and 90 °C were (1.6 ± 0.1) × 10-5 s-1 and (3.2 ± 0.2) × 10-5 s-1 for the forward and reverse reactions, respectively, and were almost identical to those [(1.5 ± 0.1) × 10-5 s-1 and (3.5 ± 0.4) × 10-5 s-1] of sophorose. The rate constant of the decomposition reaction for kojibiose was (4.7 ± 1.1) × 10-7 s-1 whereas that for sophorose [(3.7 ± 0.2) × 10-6 s-1] was about ten times higher. The epimerization reaction was not significantly affected by the variation in the buffer except for a borate buffer, and depended instead upon the pH value (concentration of hydroxide ions), indicating that epimerization occurred as a function of the hydroxide ion. These instabilities are an extension of the neutral pH conditions for keto-enol tautomerization that are often observed under strong alkaline conditions.